// Copyright GoFrame Author(https://goframe.org). All Rights Reserved. // // This Source Code Form is subject to the terms of the MIT License. // If a copy of the MIT was not distributed with this file, // You can obtain one at https://github.com/gogf/gf. package garray import ( "bytes" "fmt" "math" "sort" "github.com/gogf/gf/v2/internal/deepcopy" "github.com/gogf/gf/v2/internal/empty" "github.com/gogf/gf/v2/internal/json" "github.com/gogf/gf/v2/internal/rwmutex" "github.com/gogf/gf/v2/text/gstr" "github.com/gogf/gf/v2/util/gconv" "github.com/gogf/gf/v2/util/grand" "github.com/gogf/gf/v2/util/gutil" ) // SortedArray is a golang sorted array with rich features. // It is using increasing order in default, which can be changed by // setting it a custom comparator. // It contains a concurrent-safe/unsafe switch, which should be set // when its initialization and cannot be changed then. type SortedArray struct { mu rwmutex.RWMutex array []interface{} unique bool // Whether enable unique feature(false) comparator func(a, b interface{}) int // Comparison function(it returns -1: a < b; 0: a == b; 1: a > b) } // NewSortedArray creates and returns an empty sorted array. // The parameter `safe` is used to specify whether using array in concurrent-safety, which is false in default. // The parameter `comparator` used to compare values to sort in array, // if it returns value < 0, means `a` < `b`; the `a` will be inserted before `b`; // if it returns value = 0, means `a` = `b`; the `a` will be replaced by `b`; // if it returns value > 0, means `a` > `b`; the `a` will be inserted after `b`; func NewSortedArray(comparator func(a, b interface{}) int, safe ...bool) *SortedArray { return NewSortedArraySize(0, comparator, safe...) } // NewSortedArraySize create and returns an sorted array with given size and cap. // The parameter `safe` is used to specify whether using array in concurrent-safety, // which is false in default. func NewSortedArraySize(cap int, comparator func(a, b interface{}) int, safe ...bool) *SortedArray { return &SortedArray{ mu: rwmutex.Create(safe...), array: make([]interface{}, 0, cap), comparator: comparator, } } // NewSortedArrayRange creates and returns an array by a range from `start` to `end` // with step value `step`. func NewSortedArrayRange(start, end, step int, comparator func(a, b interface{}) int, safe ...bool) *SortedArray { if step == 0 { panic(fmt.Sprintf(`invalid step value: %d`, step)) } slice := make([]interface{}, 0) index := 0 for i := start; i <= end; i += step { slice = append(slice, i) index++ } return NewSortedArrayFrom(slice, comparator, safe...) } // NewSortedArrayFrom creates and returns an sorted array with given slice `array`. // The parameter `safe` is used to specify whether using array in concurrent-safety, // which is false in default. func NewSortedArrayFrom(array []interface{}, comparator func(a, b interface{}) int, safe ...bool) *SortedArray { a := NewSortedArraySize(0, comparator, safe...) a.array = array sort.Slice(a.array, func(i, j int) bool { return a.getComparator()(a.array[i], a.array[j]) < 0 }) return a } // NewSortedArrayFromCopy creates and returns an sorted array from a copy of given slice `array`. // The parameter `safe` is used to specify whether using array in concurrent-safety, // which is false in default. func NewSortedArrayFromCopy(array []interface{}, comparator func(a, b interface{}) int, safe ...bool) *SortedArray { newArray := make([]interface{}, len(array)) copy(newArray, array) return NewSortedArrayFrom(newArray, comparator, safe...) } // At returns the value by the specified index. // If the given `index` is out of range of the array, it returns `nil`. func (a *SortedArray) At(index int) (value interface{}) { value, _ = a.Get(index) return } // SetArray sets the underlying slice array with the given `array`. func (a *SortedArray) SetArray(array []interface{}) *SortedArray { a.mu.Lock() defer a.mu.Unlock() a.array = array sort.Slice(a.array, func(i, j int) bool { return a.getComparator()(a.array[i], a.array[j]) < 0 }) return a } // SetComparator sets/changes the comparator for sorting. // It resorts the array as the comparator is changed. func (a *SortedArray) SetComparator(comparator func(a, b interface{}) int) { a.mu.Lock() defer a.mu.Unlock() a.comparator = comparator sort.Slice(a.array, func(i, j int) bool { return a.getComparator()(a.array[i], a.array[j]) < 0 }) } // Sort sorts the array in increasing order. // The parameter `reverse` controls whether sort // in increasing order(default) or decreasing order func (a *SortedArray) Sort() *SortedArray { a.mu.Lock() defer a.mu.Unlock() sort.Slice(a.array, func(i, j int) bool { return a.getComparator()(a.array[i], a.array[j]) < 0 }) return a } // Add adds one or multiple values to sorted array, the array always keeps sorted. // It's alias of function Append, see Append. func (a *SortedArray) Add(values ...interface{}) *SortedArray { return a.Append(values...) } // Append adds one or multiple values to sorted array, the array always keeps sorted. func (a *SortedArray) Append(values ...interface{}) *SortedArray { if len(values) == 0 { return a } a.mu.Lock() defer a.mu.Unlock() for _, value := range values { index, cmp := a.binSearch(value, false) if a.unique && cmp == 0 { continue } if index < 0 { a.array = append(a.array, value) continue } if cmp > 0 { index++ } a.array = append(a.array[:index], append([]interface{}{value}, a.array[index:]...)...) } return a } // Get returns the value by the specified index. // If the given `index` is out of range of the array, the `found` is false. func (a *SortedArray) Get(index int) (value interface{}, found bool) { a.mu.RLock() defer a.mu.RUnlock() if index < 0 || index >= len(a.array) { return nil, false } return a.array[index], true } // Remove removes an item by index. // If the given `index` is out of range of the array, the `found` is false. func (a *SortedArray) Remove(index int) (value interface{}, found bool) { a.mu.Lock() defer a.mu.Unlock() return a.doRemoveWithoutLock(index) } // doRemoveWithoutLock removes an item by index without lock. func (a *SortedArray) doRemoveWithoutLock(index int) (value interface{}, found bool) { if index < 0 || index >= len(a.array) { return nil, false } // Determine array boundaries when deleting to improve deletion efficiency. if index == 0 { value := a.array[0] a.array = a.array[1:] return value, true } else if index == len(a.array)-1 { value := a.array[index] a.array = a.array[:index] return value, true } // If it is a non-boundary delete, // it will involve the creation of an array, // then the deletion is less efficient. value = a.array[index] a.array = append(a.array[:index], a.array[index+1:]...) return value, true } // RemoveValue removes an item by value. // It returns true if value is found in the array, or else false if not found. func (a *SortedArray) RemoveValue(value interface{}) bool { a.mu.Lock() defer a.mu.Unlock() if i, r := a.binSearch(value, false); r == 0 { _, res := a.doRemoveWithoutLock(i) return res } return false } // RemoveValues removes an item by `values`. func (a *SortedArray) RemoveValues(values ...interface{}) { a.mu.Lock() defer a.mu.Unlock() for _, value := range values { if i, r := a.binSearch(value, false); r == 0 { a.doRemoveWithoutLock(i) } } } // PopLeft pops and returns an item from the beginning of array. // Note that if the array is empty, the `found` is false. func (a *SortedArray) PopLeft() (value interface{}, found bool) { a.mu.Lock() defer a.mu.Unlock() if len(a.array) == 0 { return nil, false } value = a.array[0] a.array = a.array[1:] return value, true } // PopRight pops and returns an item from the end of array. // Note that if the array is empty, the `found` is false. func (a *SortedArray) PopRight() (value interface{}, found bool) { a.mu.Lock() defer a.mu.Unlock() index := len(a.array) - 1 if index < 0 { return nil, false } value = a.array[index] a.array = a.array[:index] return value, true } // PopRand randomly pops and return an item out of array. // Note that if the array is empty, the `found` is false. func (a *SortedArray) PopRand() (value interface{}, found bool) { a.mu.Lock() defer a.mu.Unlock() return a.doRemoveWithoutLock(grand.Intn(len(a.array))) } // PopRands randomly pops and returns `size` items out of array. func (a *SortedArray) PopRands(size int) []interface{} { a.mu.Lock() defer a.mu.Unlock() if size <= 0 || len(a.array) == 0 { return nil } if size >= len(a.array) { size = len(a.array) } array := make([]interface{}, size) for i := 0; i < size; i++ { array[i], _ = a.doRemoveWithoutLock(grand.Intn(len(a.array))) } return array } // PopLefts pops and returns `size` items from the beginning of array. func (a *SortedArray) PopLefts(size int) []interface{} { a.mu.Lock() defer a.mu.Unlock() if size <= 0 || len(a.array) == 0 { return nil } if size >= len(a.array) { array := a.array a.array = a.array[:0] return array } value := a.array[0:size] a.array = a.array[size:] return value } // PopRights pops and returns `size` items from the end of array. func (a *SortedArray) PopRights(size int) []interface{} { a.mu.Lock() defer a.mu.Unlock() if size <= 0 || len(a.array) == 0 { return nil } index := len(a.array) - size if index <= 0 { array := a.array a.array = a.array[:0] return array } value := a.array[index:] a.array = a.array[:index] return value } // Range picks and returns items by range, like array[start:end]. // Notice, if in concurrent-safe usage, it returns a copy of slice; // else a pointer to the underlying data. // // If `end` is negative, then the offset will start from the end of array. // If `end` is omitted, then the sequence will have everything from start up // until the end of the array. func (a *SortedArray) Range(start int, end ...int) []interface{} { a.mu.RLock() defer a.mu.RUnlock() offsetEnd := len(a.array) if len(end) > 0 && end[0] < offsetEnd { offsetEnd = end[0] } if start > offsetEnd { return nil } if start < 0 { start = 0 } array := ([]interface{})(nil) if a.mu.IsSafe() { array = make([]interface{}, offsetEnd-start) copy(array, a.array[start:offsetEnd]) } else { array = a.array[start:offsetEnd] } return array } // SubSlice returns a slice of elements from the array as specified // by the `offset` and `size` parameters. // If in concurrent safe usage, it returns a copy of the slice; else a pointer. // // If offset is non-negative, the sequence will start at that offset in the array. // If offset is negative, the sequence will start that far from the end of the array. // // If length is given and is positive, then the sequence will have up to that many elements in it. // If the array is shorter than the length, then only the available array elements will be present. // If length is given and is negative then the sequence will stop that many elements from the end of the array. // If it is omitted, then the sequence will have everything from offset up until the end of the array. // // Any possibility crossing the left border of array, it will fail. func (a *SortedArray) SubSlice(offset int, length ...int) []interface{} { a.mu.RLock() defer a.mu.RUnlock() size := len(a.array) if len(length) > 0 { size = length[0] } if offset > len(a.array) { return nil } if offset < 0 { offset = len(a.array) + offset if offset < 0 { return nil } } if size < 0 { offset += size size = -size if offset < 0 { return nil } } end := offset + size if end > len(a.array) { end = len(a.array) size = len(a.array) - offset } if a.mu.IsSafe() { s := make([]interface{}, size) copy(s, a.array[offset:]) return s } else { return a.array[offset:end] } } // Sum returns the sum of values in an array. func (a *SortedArray) Sum() (sum int) { a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { sum += gconv.Int(v) } return } // Len returns the length of array. func (a *SortedArray) Len() int { a.mu.RLock() length := len(a.array) a.mu.RUnlock() return length } // Slice returns the underlying data of array. // Note that, if it's in concurrent-safe usage, it returns a copy of underlying data, // or else a pointer to the underlying data. func (a *SortedArray) Slice() []interface{} { var array []interface{} if a.mu.IsSafe() { a.mu.RLock() defer a.mu.RUnlock() array = make([]interface{}, len(a.array)) copy(array, a.array) } else { array = a.array } return array } // Interfaces returns current array as []interface{}. func (a *SortedArray) Interfaces() []interface{} { return a.Slice() } // Contains checks whether a value exists in the array. func (a *SortedArray) Contains(value interface{}) bool { return a.Search(value) != -1 } // Search searches array by `value`, returns the index of `value`, // or returns -1 if not exists. func (a *SortedArray) Search(value interface{}) (index int) { if i, r := a.binSearch(value, true); r == 0 { return i } return -1 } // Binary search. // It returns the last compared index and the result. // If `result` equals to 0, it means the value at `index` is equals to `value`. // If `result` lesser than 0, it means the value at `index` is lesser than `value`. // If `result` greater than 0, it means the value at `index` is greater than `value`. func (a *SortedArray) binSearch(value interface{}, lock bool) (index int, result int) { if lock { a.mu.RLock() defer a.mu.RUnlock() } if len(a.array) == 0 { return -1, -2 } min := 0 max := len(a.array) - 1 mid := 0 cmp := -2 for min <= max { mid = min + (max-min)/2 cmp = a.getComparator()(value, a.array[mid]) switch { case cmp < 0: max = mid - 1 case cmp > 0: min = mid + 1 default: return mid, cmp } } return mid, cmp } // SetUnique sets unique mark to the array, // which means it does not contain any repeated items. // It also does unique check, remove all repeated items. func (a *SortedArray) SetUnique(unique bool) *SortedArray { oldUnique := a.unique a.unique = unique if unique && oldUnique != unique { a.Unique() } return a } // Unique uniques the array, clear repeated items. func (a *SortedArray) Unique() *SortedArray { a.mu.Lock() defer a.mu.Unlock() if len(a.array) == 0 { return a } i := 0 for { if i == len(a.array)-1 { break } if a.getComparator()(a.array[i], a.array[i+1]) == 0 { a.array = append(a.array[:i+1], a.array[i+1+1:]...) } else { i++ } } return a } // Clone returns a new array, which is a copy of current array. func (a *SortedArray) Clone() (newArray *SortedArray) { a.mu.RLock() array := make([]interface{}, len(a.array)) copy(array, a.array) a.mu.RUnlock() return NewSortedArrayFrom(array, a.comparator, a.mu.IsSafe()) } // Clear deletes all items of current array. func (a *SortedArray) Clear() *SortedArray { a.mu.Lock() if len(a.array) > 0 { a.array = make([]interface{}, 0) } a.mu.Unlock() return a } // LockFunc locks writing by callback function `f`. func (a *SortedArray) LockFunc(f func(array []interface{})) *SortedArray { a.mu.Lock() defer a.mu.Unlock() // Keep the array always sorted. defer sort.Slice(a.array, func(i, j int) bool { return a.getComparator()(a.array[i], a.array[j]) < 0 }) f(a.array) return a } // RLockFunc locks reading by callback function `f`. func (a *SortedArray) RLockFunc(f func(array []interface{})) *SortedArray { a.mu.RLock() defer a.mu.RUnlock() f(a.array) return a } // Merge merges `array` into current array. // The parameter `array` can be any garray or slice type. // The difference between Merge and Append is Append supports only specified slice type, // but Merge supports more parameter types. func (a *SortedArray) Merge(array interface{}) *SortedArray { return a.Add(gconv.Interfaces(array)...) } // Chunk splits an array into multiple arrays, // the size of each array is determined by `size`. // The last chunk may contain less than size elements. func (a *SortedArray) Chunk(size int) [][]interface{} { if size < 1 { return nil } a.mu.RLock() defer a.mu.RUnlock() length := len(a.array) chunks := int(math.Ceil(float64(length) / float64(size))) var n [][]interface{} for i, end := 0, 0; chunks > 0; chunks-- { end = (i + 1) * size if end > length { end = length } n = append(n, a.array[i*size:end]) i++ } return n } // Rand randomly returns one item from array(no deleting). func (a *SortedArray) Rand() (value interface{}, found bool) { a.mu.RLock() defer a.mu.RUnlock() if len(a.array) == 0 { return nil, false } return a.array[grand.Intn(len(a.array))], true } // Rands randomly returns `size` items from array(no deleting). func (a *SortedArray) Rands(size int) []interface{} { a.mu.RLock() defer a.mu.RUnlock() if size <= 0 || len(a.array) == 0 { return nil } array := make([]interface{}, size) for i := 0; i < size; i++ { array[i] = a.array[grand.Intn(len(a.array))] } return array } // Join joins array elements with a string `glue`. func (a *SortedArray) Join(glue string) string { a.mu.RLock() defer a.mu.RUnlock() if len(a.array) == 0 { return "" } buffer := bytes.NewBuffer(nil) for k, v := range a.array { buffer.WriteString(gconv.String(v)) if k != len(a.array)-1 { buffer.WriteString(glue) } } return buffer.String() } // CountValues counts the number of occurrences of all values in the array. func (a *SortedArray) CountValues() map[interface{}]int { m := make(map[interface{}]int) a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { m[v]++ } return m } // Iterator is alias of IteratorAsc. func (a *SortedArray) Iterator(f func(k int, v interface{}) bool) { a.IteratorAsc(f) } // IteratorAsc iterates the array readonly in ascending order with given callback function `f`. // If `f` returns true, then it continues iterating; or false to stop. func (a *SortedArray) IteratorAsc(f func(k int, v interface{}) bool) { a.mu.RLock() defer a.mu.RUnlock() for k, v := range a.array { if !f(k, v) { break } } } // IteratorDesc iterates the array readonly in descending order with given callback function `f`. // If `f` returns true, then it continues iterating; or false to stop. func (a *SortedArray) IteratorDesc(f func(k int, v interface{}) bool) { a.mu.RLock() defer a.mu.RUnlock() for i := len(a.array) - 1; i >= 0; i-- { if !f(i, a.array[i]) { break } } } // String returns current array as a string, which implements like json.Marshal does. func (a *SortedArray) String() string { if a == nil { return "" } a.mu.RLock() defer a.mu.RUnlock() buffer := bytes.NewBuffer(nil) buffer.WriteByte('[') s := "" for k, v := range a.array { s = gconv.String(v) if gstr.IsNumeric(s) { buffer.WriteString(s) } else { buffer.WriteString(`"` + gstr.QuoteMeta(s, `"\`) + `"`) } if k != len(a.array)-1 { buffer.WriteByte(',') } } buffer.WriteByte(']') return buffer.String() } // MarshalJSON implements the interface MarshalJSON for json.Marshal. // Note that do not use pointer as its receiver here. func (a SortedArray) MarshalJSON() ([]byte, error) { a.mu.RLock() defer a.mu.RUnlock() return json.Marshal(a.array) } // UnmarshalJSON implements the interface UnmarshalJSON for json.Unmarshal. // Note that the comparator is set as string comparator in default. func (a *SortedArray) UnmarshalJSON(b []byte) error { if a.comparator == nil { a.array = make([]interface{}, 0) a.comparator = gutil.ComparatorString } a.mu.Lock() defer a.mu.Unlock() if err := json.UnmarshalUseNumber(b, &a.array); err != nil { return err } if a.comparator != nil && a.array != nil { sort.Slice(a.array, func(i, j int) bool { return a.comparator(a.array[i], a.array[j]) < 0 }) } return nil } // UnmarshalValue is an interface implement which sets any type of value for array. // Note that the comparator is set as string comparator in default. func (a *SortedArray) UnmarshalValue(value interface{}) (err error) { if a.comparator == nil { a.comparator = gutil.ComparatorString } a.mu.Lock() defer a.mu.Unlock() switch value.(type) { case string, []byte: err = json.UnmarshalUseNumber(gconv.Bytes(value), &a.array) default: a.array = gconv.SliceAny(value) } if a.comparator != nil && a.array != nil { sort.Slice(a.array, func(i, j int) bool { return a.comparator(a.array[i], a.array[j]) < 0 }) } return err } // FilterNil removes all nil value of the array. func (a *SortedArray) FilterNil() *SortedArray { a.mu.Lock() defer a.mu.Unlock() for i := 0; i < len(a.array); { if empty.IsNil(a.array[i]) { a.array = append(a.array[:i], a.array[i+1:]...) } else { break } } for i := len(a.array) - 1; i >= 0; { if empty.IsNil(a.array[i]) { a.array = append(a.array[:i], a.array[i+1:]...) } else { break } } return a } // Filter iterates array and filters elements using custom callback function. // It removes the element from array if callback function `filter` returns true, // it or else does nothing and continues iterating. func (a *SortedArray) Filter(filter func(index int, value interface{}) bool) *SortedArray { a.mu.Lock() defer a.mu.Unlock() for i := 0; i < len(a.array); { if filter(i, a.array[i]) { a.array = append(a.array[:i], a.array[i+1:]...) } else { i++ } } return a } // FilterEmpty removes all empty value of the array. // Values like: 0, nil, false, "", len(slice/map/chan) == 0 are considered empty. func (a *SortedArray) FilterEmpty() *SortedArray { a.mu.Lock() defer a.mu.Unlock() for i := 0; i < len(a.array); { if empty.IsEmpty(a.array[i]) { a.array = append(a.array[:i], a.array[i+1:]...) } else { break } } for i := len(a.array) - 1; i >= 0; { if empty.IsEmpty(a.array[i]) { a.array = append(a.array[:i], a.array[i+1:]...) } else { break } } return a } // Walk applies a user supplied function `f` to every item of array. func (a *SortedArray) Walk(f func(value interface{}) interface{}) *SortedArray { a.mu.Lock() defer a.mu.Unlock() // Keep the array always sorted. defer sort.Slice(a.array, func(i, j int) bool { return a.getComparator()(a.array[i], a.array[j]) < 0 }) for i, v := range a.array { a.array[i] = f(v) } return a } // IsEmpty checks whether the array is empty. func (a *SortedArray) IsEmpty() bool { return a.Len() == 0 } // getComparator returns the comparator if it's previously set, // or else it panics. func (a *SortedArray) getComparator() func(a, b interface{}) int { if a.comparator == nil { panic("comparator is missing for sorted array") } return a.comparator } // DeepCopy implements interface for deep copy of current type. func (a *SortedArray) DeepCopy() interface{} { if a == nil { return nil } a.mu.RLock() defer a.mu.RUnlock() newSlice := make([]interface{}, len(a.array)) for i, v := range a.array { newSlice[i] = deepcopy.Copy(v) } return NewSortedArrayFrom(newSlice, a.comparator, a.mu.IsSafe()) }