You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-library/vendor/github.com/dgraph-io/ristretto/policy.go

424 lines
10 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright 2020 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ristretto
import (
"math"
"sync"
"sync/atomic"
"github.com/dgraph-io/ristretto/z"
)
const (
// lfuSample is the number of items to sample when looking at eviction
// candidates. 5 seems to be the most optimal number [citation needed].
lfuSample = 5
)
// policy is the interface encapsulating eviction/admission behavior.
//
// TODO: remove this interface and just rename defaultPolicy to policy, as we
// are probably only going to use/implement/maintain one policy.
type policy interface {
ringConsumer
// Add attempts to Add the key-cost pair to the Policy. It returns a slice
// of evicted keys and a bool denoting whether or not the key-cost pair
// was added. If it returns true, the key should be stored in cache.
Add(uint64, int64) ([]*Item, bool)
// Has returns true if the key exists in the Policy.
Has(uint64) bool
// Del deletes the key from the Policy.
Del(uint64)
// Cap returns the available capacity.
Cap() int64
// Close stops all goroutines and closes all channels.
Close()
// Update updates the cost value for the key.
Update(uint64, int64)
// Cost returns the cost value of a key or -1 if missing.
Cost(uint64) int64
// Optionally, set stats object to track how policy is performing.
CollectMetrics(*Metrics)
// Clear zeroes out all counters and clears hashmaps.
Clear()
// MaxCost returns the current max cost of the cache policy.
MaxCost() int64
// UpdateMaxCost updates the max cost of the cache policy.
UpdateMaxCost(int64)
}
func newPolicy(numCounters, maxCost int64) policy {
return newDefaultPolicy(numCounters, maxCost)
}
type defaultPolicy struct {
sync.Mutex
admit *tinyLFU
evict *sampledLFU
itemsCh chan []uint64
stop chan struct{}
isClosed bool
metrics *Metrics
}
func newDefaultPolicy(numCounters, maxCost int64) *defaultPolicy {
p := &defaultPolicy{
admit: newTinyLFU(numCounters),
evict: newSampledLFU(maxCost),
itemsCh: make(chan []uint64, 3),
stop: make(chan struct{}),
}
go p.processItems()
return p
}
func (p *defaultPolicy) CollectMetrics(metrics *Metrics) {
p.metrics = metrics
p.evict.metrics = metrics
}
type policyPair struct {
key uint64
cost int64
}
func (p *defaultPolicy) processItems() {
for {
select {
case items := <-p.itemsCh:
p.Lock()
p.admit.Push(items)
p.Unlock()
case <-p.stop:
return
}
}
}
func (p *defaultPolicy) Push(keys []uint64) bool {
if p.isClosed {
return false
}
if len(keys) == 0 {
return true
}
select {
case p.itemsCh <- keys:
p.metrics.add(keepGets, keys[0], uint64(len(keys)))
return true
default:
p.metrics.add(dropGets, keys[0], uint64(len(keys)))
return false
}
}
// Add decides whether the item with the given key and cost should be accepted by
// the policy. It returns the list of victims that have been evicted and a boolean
// indicating whether the incoming item should be accepted.
func (p *defaultPolicy) Add(key uint64, cost int64) ([]*Item, bool) {
p.Lock()
defer p.Unlock()
// Cannot add an item bigger than entire cache.
if cost > p.evict.getMaxCost() {
return nil, false
}
// No need to go any further if the item is already in the cache.
if has := p.evict.updateIfHas(key, cost); has {
// An update does not count as an addition, so return false.
return nil, false
}
// If the execution reaches this point, the key doesn't exist in the cache.
// Calculate the remaining room in the cache (usually bytes).
room := p.evict.roomLeft(cost)
if room >= 0 {
// There's enough room in the cache to store the new item without
// overflowing. Do that now and stop here.
p.evict.add(key, cost)
p.metrics.add(costAdd, key, uint64(cost))
return nil, true
}
// incHits is the hit count for the incoming item.
incHits := p.admit.Estimate(key)
// sample is the eviction candidate pool to be filled via random sampling.
// TODO: perhaps we should use a min heap here. Right now our time
// complexity is N for finding the min. Min heap should bring it down to
// O(lg N).
sample := make([]*policyPair, 0, lfuSample)
// As items are evicted they will be appended to victims.
victims := make([]*Item, 0)
// Delete victims until there's enough space or a minKey is found that has
// more hits than incoming item.
for ; room < 0; room = p.evict.roomLeft(cost) {
// Fill up empty slots in sample.
sample = p.evict.fillSample(sample)
// Find minimally used item in sample.
minKey, minHits, minId, minCost := uint64(0), int64(math.MaxInt64), 0, int64(0)
for i, pair := range sample {
// Look up hit count for sample key.
if hits := p.admit.Estimate(pair.key); hits < minHits {
minKey, minHits, minId, minCost = pair.key, hits, i, pair.cost
}
}
// If the incoming item isn't worth keeping in the policy, reject.
if incHits < minHits {
p.metrics.add(rejectSets, key, 1)
return victims, false
}
// Delete the victim from metadata.
p.evict.del(minKey)
// Delete the victim from sample.
sample[minId] = sample[len(sample)-1]
sample = sample[:len(sample)-1]
// Store victim in evicted victims slice.
victims = append(victims, &Item{
Key: minKey,
Conflict: 0,
Cost: minCost,
})
}
p.evict.add(key, cost)
p.metrics.add(costAdd, key, uint64(cost))
return victims, true
}
func (p *defaultPolicy) Has(key uint64) bool {
p.Lock()
_, exists := p.evict.keyCosts[key]
p.Unlock()
return exists
}
func (p *defaultPolicy) Del(key uint64) {
p.Lock()
p.evict.del(key)
p.Unlock()
}
func (p *defaultPolicy) Cap() int64 {
p.Lock()
capacity := int64(p.evict.getMaxCost() - p.evict.used)
p.Unlock()
return capacity
}
func (p *defaultPolicy) Update(key uint64, cost int64) {
p.Lock()
p.evict.updateIfHas(key, cost)
p.Unlock()
}
func (p *defaultPolicy) Cost(key uint64) int64 {
p.Lock()
if cost, found := p.evict.keyCosts[key]; found {
p.Unlock()
return cost
}
p.Unlock()
return -1
}
func (p *defaultPolicy) Clear() {
p.Lock()
p.admit.clear()
p.evict.clear()
p.Unlock()
}
func (p *defaultPolicy) Close() {
if p.isClosed {
return
}
// Block until the p.processItems goroutine returns.
p.stop <- struct{}{}
close(p.stop)
close(p.itemsCh)
p.isClosed = true
}
func (p *defaultPolicy) MaxCost() int64 {
if p == nil || p.evict == nil {
return 0
}
return p.evict.getMaxCost()
}
func (p *defaultPolicy) UpdateMaxCost(maxCost int64) {
if p == nil || p.evict == nil {
return
}
p.evict.updateMaxCost(maxCost)
}
// sampledLFU is an eviction helper storing key-cost pairs.
type sampledLFU struct {
// NOTE: align maxCost to 64-bit boundary for use with atomic.
// As per https://golang.org/pkg/sync/atomic/: "On ARM, x86-32,
// and 32-bit MIPS, it is the callers responsibility to arrange
// for 64-bit alignment of 64-bit words accessed atomically.
// The first word in a variable or in an allocated struct, array,
// or slice can be relied upon to be 64-bit aligned."
maxCost int64
used int64
metrics *Metrics
keyCosts map[uint64]int64
}
func newSampledLFU(maxCost int64) *sampledLFU {
return &sampledLFU{
keyCosts: make(map[uint64]int64),
maxCost: maxCost,
}
}
func (p *sampledLFU) getMaxCost() int64 {
return atomic.LoadInt64(&p.maxCost)
}
func (p *sampledLFU) updateMaxCost(maxCost int64) {
atomic.StoreInt64(&p.maxCost, maxCost)
}
func (p *sampledLFU) roomLeft(cost int64) int64 {
return p.getMaxCost() - (p.used + cost)
}
func (p *sampledLFU) fillSample(in []*policyPair) []*policyPair {
if len(in) >= lfuSample {
return in
}
for key, cost := range p.keyCosts {
in = append(in, &policyPair{key, cost})
if len(in) >= lfuSample {
return in
}
}
return in
}
func (p *sampledLFU) del(key uint64) {
cost, ok := p.keyCosts[key]
if !ok {
return
}
p.used -= cost
delete(p.keyCosts, key)
p.metrics.add(costEvict, key, uint64(cost))
p.metrics.add(keyEvict, key, 1)
}
func (p *sampledLFU) add(key uint64, cost int64) {
p.keyCosts[key] = cost
p.used += cost
}
func (p *sampledLFU) updateIfHas(key uint64, cost int64) bool {
if prev, found := p.keyCosts[key]; found {
// Update the cost of an existing key, but don't worry about evicting.
// Evictions will be handled the next time a new item is added.
p.metrics.add(keyUpdate, key, 1)
if prev > cost {
diff := prev - cost
p.metrics.add(costAdd, key, ^uint64(uint64(diff)-1))
} else if cost > prev {
diff := cost - prev
p.metrics.add(costAdd, key, uint64(diff))
}
p.used += cost - prev
p.keyCosts[key] = cost
return true
}
return false
}
func (p *sampledLFU) clear() {
p.used = 0
p.keyCosts = make(map[uint64]int64)
}
// tinyLFU is an admission helper that keeps track of access frequency using
// tiny (4-bit) counters in the form of a count-min sketch.
// tinyLFU is NOT thread safe.
type tinyLFU struct {
freq *cmSketch
door *z.Bloom
incrs int64
resetAt int64
}
func newTinyLFU(numCounters int64) *tinyLFU {
return &tinyLFU{
freq: newCmSketch(numCounters),
door: z.NewBloomFilter(float64(numCounters), 0.01),
resetAt: numCounters,
}
}
func (p *tinyLFU) Push(keys []uint64) {
for _, key := range keys {
p.Increment(key)
}
}
func (p *tinyLFU) Estimate(key uint64) int64 {
hits := p.freq.Estimate(key)
if p.door.Has(key) {
hits++
}
return hits
}
func (p *tinyLFU) Increment(key uint64) {
// Flip doorkeeper bit if not already done.
if added := p.door.AddIfNotHas(key); !added {
// Increment count-min counter if doorkeeper bit is already set.
p.freq.Increment(key)
}
p.incrs++
if p.incrs >= p.resetAt {
p.reset()
}
}
func (p *tinyLFU) reset() {
// Zero out incrs.
p.incrs = 0
// clears doorkeeper bits
p.door.Clear()
// halves count-min counters
p.freq.Reset()
}
func (p *tinyLFU) clear() {
p.incrs = 0
p.door.Clear()
p.freq.Clear()
}