You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-library/vendor/github.com/gogf/gf/v2/container/gmap/gmap_hash_str_str_map.go

527 lines
12 KiB

// Copyright GoFrame Author(https://goframe.org). All Rights Reserved.
//
// This Source Code Form is subject to the terms of the MIT License.
// If a copy of the MIT was not distributed with gm file,
// You can obtain one at https://github.com/gogf/gf.
//
package gmap
import (
"github.com/gogf/gf/v2/internal/empty"
"github.com/gogf/gf/v2/internal/json"
"github.com/gogf/gf/v2/internal/rwmutex"
"github.com/gogf/gf/v2/util/gconv"
)
// StrStrMap implements map[string]string with RWMutex that has switch.
type StrStrMap struct {
mu rwmutex.RWMutex
data map[string]string
}
// NewStrStrMap returns an empty StrStrMap object.
// The parameter `safe` is used to specify whether using map in concurrent-safety,
// which is false in default.
func NewStrStrMap(safe ...bool) *StrStrMap {
return &StrStrMap{
data: make(map[string]string),
mu: rwmutex.Create(safe...),
}
}
// NewStrStrMapFrom creates and returns a hash map from given map `data`.
// Note that, the param `data` map will be set as the underlying data map(no deep copy),
// there might be some concurrent-safe issues when changing the map outside.
func NewStrStrMapFrom(data map[string]string, safe ...bool) *StrStrMap {
return &StrStrMap{
mu: rwmutex.Create(safe...),
data: data,
}
}
// Iterator iterates the hash map readonly with custom callback function `f`.
// If `f` returns true, then it continues iterating; or false to stop.
func (m *StrStrMap) Iterator(f func(k string, v string) bool) {
m.mu.RLock()
defer m.mu.RUnlock()
for k, v := range m.data {
if !f(k, v) {
break
}
}
}
// Clone returns a new hash map with copy of current map data.
func (m *StrStrMap) Clone() *StrStrMap {
return NewStrStrMapFrom(m.MapCopy(), m.mu.IsSafe())
}
// Map returns the underlying data map.
// Note that, if it's in concurrent-safe usage, it returns a copy of underlying data,
// or else a pointer to the underlying data.
func (m *StrStrMap) Map() map[string]string {
m.mu.RLock()
defer m.mu.RUnlock()
if !m.mu.IsSafe() {
return m.data
}
data := make(map[string]string, len(m.data))
for k, v := range m.data {
data[k] = v
}
return data
}
// MapStrAny returns a copy of the underlying data of the map as map[string]interface{}.
func (m *StrStrMap) MapStrAny() map[string]interface{} {
m.mu.RLock()
data := make(map[string]interface{}, len(m.data))
for k, v := range m.data {
data[k] = v
}
m.mu.RUnlock()
return data
}
// MapCopy returns a copy of the underlying data of the hash map.
func (m *StrStrMap) MapCopy() map[string]string {
m.mu.RLock()
defer m.mu.RUnlock()
data := make(map[string]string, len(m.data))
for k, v := range m.data {
data[k] = v
}
return data
}
// FilterEmpty deletes all key-value pair of which the value is empty.
// Values like: 0, nil, false, "", len(slice/map/chan) == 0 are considered empty.
func (m *StrStrMap) FilterEmpty() {
m.mu.Lock()
for k, v := range m.data {
if empty.IsEmpty(v) {
delete(m.data, k)
}
}
m.mu.Unlock()
}
// Set sets key-value to the hash map.
func (m *StrStrMap) Set(key string, val string) {
m.mu.Lock()
if m.data == nil {
m.data = make(map[string]string)
}
m.data[key] = val
m.mu.Unlock()
}
// Sets batch sets key-values to the hash map.
func (m *StrStrMap) Sets(data map[string]string) {
m.mu.Lock()
if m.data == nil {
m.data = data
} else {
for k, v := range data {
m.data[k] = v
}
}
m.mu.Unlock()
}
// Search searches the map with given `key`.
// Second return parameter `found` is true if key was found, otherwise false.
func (m *StrStrMap) Search(key string) (value string, found bool) {
m.mu.RLock()
if m.data != nil {
value, found = m.data[key]
}
m.mu.RUnlock()
return
}
// Get returns the value by given `key`.
func (m *StrStrMap) Get(key string) (value string) {
m.mu.RLock()
if m.data != nil {
value = m.data[key]
}
m.mu.RUnlock()
return
}
// Pop retrieves and deletes an item from the map.
func (m *StrStrMap) Pop() (key, value string) {
m.mu.Lock()
defer m.mu.Unlock()
for key, value = range m.data {
delete(m.data, key)
return
}
return
}
// Pops retrieves and deletes `size` items from the map.
// It returns all items if size == -1.
func (m *StrStrMap) Pops(size int) map[string]string {
m.mu.Lock()
defer m.mu.Unlock()
if size > len(m.data) || size == -1 {
size = len(m.data)
}
if size == 0 {
return nil
}
var (
index = 0
newMap = make(map[string]string, size)
)
for k, v := range m.data {
delete(m.data, k)
newMap[k] = v
index++
if index == size {
break
}
}
return newMap
}
// doSetWithLockCheck checks whether value of the key exists with mutex.Lock,
// if not exists, set value to the map with given `key`,
// or else just return the existing value.
//
// It returns value with given `key`.
func (m *StrStrMap) doSetWithLockCheck(key string, value string) string {
m.mu.Lock()
defer m.mu.Unlock()
if m.data == nil {
m.data = make(map[string]string)
}
if v, ok := m.data[key]; ok {
return v
}
m.data[key] = value
return value
}
// GetOrSet returns the value by key,
// or sets value with given `value` if it does not exist and then returns this value.
func (m *StrStrMap) GetOrSet(key string, value string) string {
if v, ok := m.Search(key); !ok {
return m.doSetWithLockCheck(key, value)
} else {
return v
}
}
// GetOrSetFunc returns the value by key,
// or sets value with returned value of callback function `f` if it does not exist
// and then returns this value.
func (m *StrStrMap) GetOrSetFunc(key string, f func() string) string {
if v, ok := m.Search(key); !ok {
return m.doSetWithLockCheck(key, f())
} else {
return v
}
}
// GetOrSetFuncLock returns the value by key,
// or sets value with returned value of callback function `f` if it does not exist
// and then returns this value.
//
// GetOrSetFuncLock differs with GetOrSetFunc function is that it executes function `f`
// with mutex.Lock of the hash map.
func (m *StrStrMap) GetOrSetFuncLock(key string, f func() string) string {
if v, ok := m.Search(key); !ok {
m.mu.Lock()
defer m.mu.Unlock()
if m.data == nil {
m.data = make(map[string]string)
}
if v, ok = m.data[key]; ok {
return v
}
v = f()
m.data[key] = v
return v
} else {
return v
}
}
// SetIfNotExist sets `value` to the map if the `key` does not exist, and then returns true.
// It returns false if `key` exists, and `value` would be ignored.
func (m *StrStrMap) SetIfNotExist(key string, value string) bool {
if !m.Contains(key) {
m.doSetWithLockCheck(key, value)
return true
}
return false
}
// SetIfNotExistFunc sets value with return value of callback function `f`, and then returns true.
// It returns false if `key` exists, and `value` would be ignored.
func (m *StrStrMap) SetIfNotExistFunc(key string, f func() string) bool {
if !m.Contains(key) {
m.doSetWithLockCheck(key, f())
return true
}
return false
}
// SetIfNotExistFuncLock sets value with return value of callback function `f`, and then returns true.
// It returns false if `key` exists, and `value` would be ignored.
//
// SetIfNotExistFuncLock differs with SetIfNotExistFunc function is that
// it executes function `f` with mutex.Lock of the hash map.
func (m *StrStrMap) SetIfNotExistFuncLock(key string, f func() string) bool {
if !m.Contains(key) {
m.mu.Lock()
defer m.mu.Unlock()
if m.data == nil {
m.data = make(map[string]string)
}
if _, ok := m.data[key]; !ok {
m.data[key] = f()
}
return true
}
return false
}
// Removes batch deletes values of the map by keys.
func (m *StrStrMap) Removes(keys []string) {
m.mu.Lock()
if m.data != nil {
for _, key := range keys {
delete(m.data, key)
}
}
m.mu.Unlock()
}
// Remove deletes value from map by given `key`, and return this deleted value.
func (m *StrStrMap) Remove(key string) (value string) {
m.mu.Lock()
if m.data != nil {
var ok bool
if value, ok = m.data[key]; ok {
delete(m.data, key)
}
}
m.mu.Unlock()
return
}
// Keys returns all keys of the map as a slice.
func (m *StrStrMap) Keys() []string {
m.mu.RLock()
var (
keys = make([]string, len(m.data))
index = 0
)
for key := range m.data {
keys[index] = key
index++
}
m.mu.RUnlock()
return keys
}
// Values returns all values of the map as a slice.
func (m *StrStrMap) Values() []string {
m.mu.RLock()
var (
values = make([]string, len(m.data))
index = 0
)
for _, value := range m.data {
values[index] = value
index++
}
m.mu.RUnlock()
return values
}
// Contains checks whether a key exists.
// It returns true if the `key` exists, or else false.
func (m *StrStrMap) Contains(key string) bool {
var ok bool
m.mu.RLock()
if m.data != nil {
_, ok = m.data[key]
}
m.mu.RUnlock()
return ok
}
// Size returns the size of the map.
func (m *StrStrMap) Size() int {
m.mu.RLock()
length := len(m.data)
m.mu.RUnlock()
return length
}
// IsEmpty checks whether the map is empty.
// It returns true if map is empty, or else false.
func (m *StrStrMap) IsEmpty() bool {
return m.Size() == 0
}
// Clear deletes all data of the map, it will remake a new underlying data map.
func (m *StrStrMap) Clear() {
m.mu.Lock()
m.data = make(map[string]string)
m.mu.Unlock()
}
// Replace the data of the map with given `data`.
func (m *StrStrMap) Replace(data map[string]string) {
m.mu.Lock()
m.data = data
m.mu.Unlock()
}
// LockFunc locks writing with given callback function `f` within RWMutex.Lock.
func (m *StrStrMap) LockFunc(f func(m map[string]string)) {
m.mu.Lock()
defer m.mu.Unlock()
f(m.data)
}
// RLockFunc locks reading with given callback function `f` within RWMutex.RLock.
func (m *StrStrMap) RLockFunc(f func(m map[string]string)) {
m.mu.RLock()
defer m.mu.RUnlock()
f(m.data)
}
// Flip exchanges key-value of the map to value-key.
func (m *StrStrMap) Flip() {
m.mu.Lock()
defer m.mu.Unlock()
n := make(map[string]string, len(m.data))
for k, v := range m.data {
n[v] = k
}
m.data = n
}
// Merge merges two hash maps.
// The `other` map will be merged into the map `m`.
func (m *StrStrMap) Merge(other *StrStrMap) {
m.mu.Lock()
defer m.mu.Unlock()
if m.data == nil {
m.data = other.MapCopy()
return
}
if other != m {
other.mu.RLock()
defer other.mu.RUnlock()
}
for k, v := range other.data {
m.data[k] = v
}
}
// String returns the map as a string.
func (m *StrStrMap) String() string {
if m == nil {
return ""
}
b, _ := m.MarshalJSON()
return string(b)
}
// MarshalJSON implements the interface MarshalJSON for json.Marshal.
func (m StrStrMap) MarshalJSON() ([]byte, error) {
m.mu.RLock()
defer m.mu.RUnlock()
return json.Marshal(m.data)
}
// UnmarshalJSON implements the interface UnmarshalJSON for json.Unmarshal.
func (m *StrStrMap) UnmarshalJSON(b []byte) error {
m.mu.Lock()
defer m.mu.Unlock()
if m.data == nil {
m.data = make(map[string]string)
}
if err := json.UnmarshalUseNumber(b, &m.data); err != nil {
return err
}
return nil
}
// UnmarshalValue is an interface implement which sets any type of value for map.
func (m *StrStrMap) UnmarshalValue(value interface{}) (err error) {
m.mu.Lock()
defer m.mu.Unlock()
m.data = gconv.MapStrStr(value)
return
}
// DeepCopy implements interface for deep copy of current type.
func (m *StrStrMap) DeepCopy() interface{} {
if m == nil {
return nil
}
m.mu.RLock()
defer m.mu.RUnlock()
data := make(map[string]string, len(m.data))
for k, v := range m.data {
data[k] = v
}
return NewStrStrMapFrom(data, m.mu.IsSafe())
}
// IsSubOf checks whether the current map is a sub-map of `other`.
func (m *StrStrMap) IsSubOf(other *StrStrMap) bool {
if m == other {
return true
}
m.mu.RLock()
defer m.mu.RUnlock()
other.mu.RLock()
defer other.mu.RUnlock()
for key, value := range m.data {
otherValue, ok := other.data[key]
if !ok {
return false
}
if otherValue != value {
return false
}
}
return true
}
// Diff compares current map `m` with map `other` and returns their different keys.
// The returned `addedKeys` are the keys that are in map `m` but not in map `other`.
// The returned `removedKeys` are the keys that are in map `other` but not in map `m`.
// The returned `updatedKeys` are the keys that are both in map `m` and `other` but their values and not equal (`!=`).
func (m *StrStrMap) Diff(other *StrStrMap) (addedKeys, removedKeys, updatedKeys []string) {
m.mu.RLock()
defer m.mu.RUnlock()
other.mu.RLock()
defer other.mu.RUnlock()
for key := range m.data {
if _, ok := other.data[key]; !ok {
removedKeys = append(removedKeys, key)
} else if m.data[key] != other.data[key] {
updatedKeys = append(updatedKeys, key)
}
}
for key := range other.data {
if _, ok := m.data[key]; !ok {
addedKeys = append(addedKeys, key)
}
}
return
}