// Copyright 2019+ Klaus Post. All rights reserved. // License information can be found in the LICENSE file. // Based on work by Yann Collet, released under BSD License. package zstd import "fmt" const ( betterLongTableBits = 19 // Bits used in the long match table betterLongTableSize = 1 << betterLongTableBits // Size of the table betterLongLen = 8 // Bytes used for table hash // Note: Increasing the short table bits or making the hash shorter // can actually lead to compression degradation since it will 'steal' more from the // long match table and match offsets are quite big. // This greatly depends on the type of input. betterShortTableBits = 13 // Bits used in the short match table betterShortTableSize = 1 << betterShortTableBits // Size of the table betterShortLen = 5 // Bytes used for table hash betterLongTableShardCnt = 1 << (betterLongTableBits - dictShardBits) // Number of shards in the table betterLongTableShardSize = betterLongTableSize / betterLongTableShardCnt // Size of an individual shard betterShortTableShardCnt = 1 << (betterShortTableBits - dictShardBits) // Number of shards in the table betterShortTableShardSize = betterShortTableSize / betterShortTableShardCnt // Size of an individual shard ) type prevEntry struct { offset int32 prev int32 } // betterFastEncoder uses 2 tables, one for short matches (5 bytes) and one for long matches. // The long match table contains the previous entry with the same hash, // effectively making it a "chain" of length 2. // When we find a long match we choose between the two values and select the longest. // When we find a short match, after checking the long, we check if we can find a long at n+1 // and that it is longer (lazy matching). type betterFastEncoder struct { fastBase table [betterShortTableSize]tableEntry longTable [betterLongTableSize]prevEntry } type betterFastEncoderDict struct { betterFastEncoder dictTable []tableEntry dictLongTable []prevEntry shortTableShardDirty [betterShortTableShardCnt]bool longTableShardDirty [betterLongTableShardCnt]bool allDirty bool } // Encode improves compression... func (e *betterFastEncoder) Encode(blk *blockEnc, src []byte) { const ( // Input margin is the number of bytes we read (8) // and the maximum we will read ahead (2) inputMargin = 8 + 2 minNonLiteralBlockSize = 16 ) // Protect against e.cur wraparound. for e.cur >= bufferReset { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } for i := range e.longTable[:] { e.longTable[i] = prevEntry{} } e.cur = e.maxMatchOff break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff for i := range e.table[:] { v := e.table[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.table[i].offset = v } for i := range e.longTable[:] { v := e.longTable[i].offset v2 := e.longTable[i].prev if v < minOff { v = 0 v2 = 0 } else { v = v - e.cur + e.maxMatchOff if v2 < minOff { v2 = 0 } else { v2 = v2 - e.cur + e.maxMatchOff } } e.longTable[i] = prevEntry{ offset: v, prev: v2, } } e.cur = e.maxMatchOff break } s := e.addBlock(src) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } // Override src src = e.hist sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 1. const stepSize = 1 const kSearchStrength = 9 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debugEncoder { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { var t int32 // We allow the encoder to optionally turn off repeat offsets across blocks canRepeat := len(blk.sequences) > 2 var matched int32 for { if debugAsserts && canRepeat && offset1 == 0 { panic("offset0 was 0") } nextHashL := hashLen(cv, betterLongTableBits, betterLongLen) nextHashS := hashLen(cv, betterShortTableBits, betterShortLen) candidateL := e.longTable[nextHashL] candidateS := e.table[nextHashS] const repOff = 1 repIndex := s - offset1 + repOff off := s + e.cur e.longTable[nextHashL] = prevEntry{offset: off, prev: candidateL.offset} e.table[nextHashS] = tableEntry{offset: off, val: uint32(cv)} if canRepeat { if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) { // Consider history as well. var seq seq lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Index match start+1 (long) -> s - 1 index0 := s + repOff s += lenght + repOff nextEmit = s if s >= sLimit { if debugEncoder { println("repeat ended", s, lenght) } break encodeLoop } // Index skipped... for index0 < s-1 { cv0 := load6432(src, index0) cv1 := cv0 >> 8 h0 := hashLen(cv0, betterLongTableBits, betterLongLen) off := index0 + e.cur e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} e.table[hashLen(cv1, betterShortTableBits, betterShortLen)] = tableEntry{offset: off + 1, val: uint32(cv1)} index0 += 2 } cv = load6432(src, s) continue } const repOff2 = 1 // We deviate from the reference encoder and also check offset 2. // Still slower and not much better, so disabled. // repIndex = s - offset2 + repOff2 if false && repIndex >= 0 && load6432(src, repIndex) == load6432(src, s+repOff) { // Consider history as well. var seq seq lenght := 8 + e.matchlen(s+8+repOff2, repIndex+8, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff2 // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 2 seq.offset = 2 if debugSequences { println("repeat sequence 2", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) index0 := s + repOff2 s += lenght + repOff2 nextEmit = s if s >= sLimit { if debugEncoder { println("repeat ended", s, lenght) } break encodeLoop } // Index skipped... for index0 < s-1 { cv0 := load6432(src, index0) cv1 := cv0 >> 8 h0 := hashLen(cv0, betterLongTableBits, betterLongLen) off := index0 + e.cur e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} e.table[hashLen(cv1, betterShortTableBits, betterShortLen)] = tableEntry{offset: off + 1, val: uint32(cv1)} index0 += 2 } cv = load6432(src, s) // Swap offsets offset1, offset2 = offset2, offset1 continue } } // Find the offsets of our two matches. coffsetL := candidateL.offset - e.cur coffsetLP := candidateL.prev - e.cur // Check if we have a long match. if s-coffsetL < e.maxMatchOff && cv == load6432(src, coffsetL) { // Found a long match, at least 8 bytes. matched = e.matchlen(s+8, coffsetL+8, src) + 8 t = coffsetL if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } if s-coffsetLP < e.maxMatchOff && cv == load6432(src, coffsetLP) { // Found a long match, at least 8 bytes. prevMatch := e.matchlen(s+8, coffsetLP+8, src) + 8 if prevMatch > matched { matched = prevMatch t = coffsetLP } if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } } break } // Check if we have a long match on prev. if s-coffsetLP < e.maxMatchOff && cv == load6432(src, coffsetLP) { // Found a long match, at least 8 bytes. matched = e.matchlen(s+8, coffsetLP+8, src) + 8 t = coffsetLP if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } break } coffsetS := candidateS.offset - e.cur // Check if we have a short match. if s-coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { // found a regular match matched = e.matchlen(s+4, coffsetS+4, src) + 4 // See if we can find a long match at s+1 const checkAt = 1 cv := load6432(src, s+checkAt) nextHashL = hashLen(cv, betterLongTableBits, betterLongLen) candidateL = e.longTable[nextHashL] coffsetL = candidateL.offset - e.cur // We can store it, since we have at least a 4 byte match. e.longTable[nextHashL] = prevEntry{offset: s + checkAt + e.cur, prev: candidateL.offset} if s-coffsetL < e.maxMatchOff && cv == load6432(src, coffsetL) { // Found a long match, at least 8 bytes. matchedNext := e.matchlen(s+8+checkAt, coffsetL+8, src) + 8 if matchedNext > matched { t = coffsetL s += checkAt matched = matchedNext if debugMatches { println("long match (after short)") } break } } // Check prev long... coffsetL = candidateL.prev - e.cur if s-coffsetL < e.maxMatchOff && cv == load6432(src, coffsetL) { // Found a long match, at least 8 bytes. matchedNext := e.matchlen(s+8+checkAt, coffsetL+8, src) + 8 if matchedNext > matched { t = coffsetL s += checkAt matched = matchedNext if debugMatches { println("prev long match (after short)") } break } } t = coffsetS if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugAsserts && t < 0 { panic("t<0") } if debugMatches { println("short match") } break } // No match found, move forward in input. s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // Try to find a better match by searching for a long match at the end of the current best match if s+matched < sLimit { // Allow some bytes at the beginning to mismatch. // Sweet spot is around 3 bytes, but depends on input. // The skipped bytes are tested in Extend backwards, // and still picked up as part of the match if they do. const skipBeginning = 3 nextHashL := hashLen(load6432(src, s+matched), betterLongTableBits, betterLongLen) s2 := s + skipBeginning cv := load3232(src, s2) candidateL := e.longTable[nextHashL] coffsetL := candidateL.offset - e.cur - matched + skipBeginning if coffsetL >= 0 && coffsetL < s2 && s2-coffsetL < e.maxMatchOff && cv == load3232(src, coffsetL) { // Found a long match, at least 4 bytes. matchedNext := e.matchlen(s2+4, coffsetL+4, src) + 4 if matchedNext > matched { t = coffsetL s = s2 matched = matchedNext if debugMatches { println("long match at end-of-match") } } } // Check prev long... if true { coffsetL = candidateL.prev - e.cur - matched + skipBeginning if coffsetL >= 0 && coffsetL < s2 && s2-coffsetL < e.maxMatchOff && cv == load3232(src, coffsetL) { // Found a long match, at least 4 bytes. matchedNext := e.matchlen(s2+4, coffsetL+4, src) + 4 if matchedNext > matched { t = coffsetL s = s2 matched = matchedNext if debugMatches { println("prev long match at end-of-match") } } } } } // A match has been found. Update recent offsets. offset2 = offset1 offset1 = s - t if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && canRepeat && int(offset1) > len(src) { panic("invalid offset") } // Extend the n-byte match as long as possible. l := matched // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { s-- t-- l++ } // Write our sequence var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } // Index match start+1 (long) -> s - 1 index0 := s - l + 1 for index0 < s-1 { cv0 := load6432(src, index0) cv1 := cv0 >> 8 h0 := hashLen(cv0, betterLongTableBits, betterLongLen) off := index0 + e.cur e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} e.table[hashLen(cv1, betterShortTableBits, betterShortLen)] = tableEntry{offset: off + 1, val: uint32(cv1)} index0 += 2 } cv = load6432(src, s) if !canRepeat { continue } // Check offset 2 for { o2 := s - offset2 if load3232(src, o2) != uint32(cv) { // Do regular search break } // Store this, since we have it. nextHashL := hashLen(cv, betterLongTableBits, betterLongLen) nextHashS := hashLen(cv, betterShortTableBits, betterShortLen) // We have at least 4 byte match. // No need to check backwards. We come straight from a match l := 4 + e.matchlen(s+4, o2+4, src) e.longTable[nextHashL] = prevEntry{offset: s + e.cur, prev: e.longTable[nextHashL].offset} e.table[nextHashS] = tableEntry{offset: s + e.cur, val: uint32(cv)} seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { // Finished break encodeLoop } cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } blk.recentOffsets[0] = uint32(offset1) blk.recentOffsets[1] = uint32(offset2) if debugEncoder { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } } // EncodeNoHist will encode a block with no history and no following blocks. // Most notable difference is that src will not be copied for history and // we do not need to check for max match length. func (e *betterFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) { e.ensureHist(len(src)) e.Encode(blk, src) } // Encode improves compression... func (e *betterFastEncoderDict) Encode(blk *blockEnc, src []byte) { const ( // Input margin is the number of bytes we read (8) // and the maximum we will read ahead (2) inputMargin = 8 + 2 minNonLiteralBlockSize = 16 ) // Protect against e.cur wraparound. for e.cur >= bufferReset { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } for i := range e.longTable[:] { e.longTable[i] = prevEntry{} } e.cur = e.maxMatchOff e.allDirty = true break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff for i := range e.table[:] { v := e.table[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.table[i].offset = v } for i := range e.longTable[:] { v := e.longTable[i].offset v2 := e.longTable[i].prev if v < minOff { v = 0 v2 = 0 } else { v = v - e.cur + e.maxMatchOff if v2 < minOff { v2 = 0 } else { v2 = v2 - e.cur + e.maxMatchOff } } e.longTable[i] = prevEntry{ offset: v, prev: v2, } } e.allDirty = true e.cur = e.maxMatchOff break } s := e.addBlock(src) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } // Override src src = e.hist sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 1. const stepSize = 1 const kSearchStrength = 9 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debugEncoder { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { var t int32 // We allow the encoder to optionally turn off repeat offsets across blocks canRepeat := len(blk.sequences) > 2 var matched int32 for { if debugAsserts && canRepeat && offset1 == 0 { panic("offset0 was 0") } nextHashL := hashLen(cv, betterLongTableBits, betterLongLen) nextHashS := hashLen(cv, betterShortTableBits, betterShortLen) candidateL := e.longTable[nextHashL] candidateS := e.table[nextHashS] const repOff = 1 repIndex := s - offset1 + repOff off := s + e.cur e.longTable[nextHashL] = prevEntry{offset: off, prev: candidateL.offset} e.markLongShardDirty(nextHashL) e.table[nextHashS] = tableEntry{offset: off, val: uint32(cv)} e.markShortShardDirty(nextHashS) if canRepeat { if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) { // Consider history as well. var seq seq lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Index match start+1 (long) -> s - 1 index0 := s + repOff s += lenght + repOff nextEmit = s if s >= sLimit { if debugEncoder { println("repeat ended", s, lenght) } break encodeLoop } // Index skipped... for index0 < s-1 { cv0 := load6432(src, index0) cv1 := cv0 >> 8 h0 := hashLen(cv0, betterLongTableBits, betterLongLen) off := index0 + e.cur e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} e.markLongShardDirty(h0) h1 := hashLen(cv1, betterShortTableBits, betterShortLen) e.table[h1] = tableEntry{offset: off + 1, val: uint32(cv1)} e.markShortShardDirty(h1) index0 += 2 } cv = load6432(src, s) continue } const repOff2 = 1 // We deviate from the reference encoder and also check offset 2. // Still slower and not much better, so disabled. // repIndex = s - offset2 + repOff2 if false && repIndex >= 0 && load6432(src, repIndex) == load6432(src, s+repOff) { // Consider history as well. var seq seq lenght := 8 + e.matchlen(s+8+repOff2, repIndex+8, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff2 // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 2 seq.offset = 2 if debugSequences { println("repeat sequence 2", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) index0 := s + repOff2 s += lenght + repOff2 nextEmit = s if s >= sLimit { if debugEncoder { println("repeat ended", s, lenght) } break encodeLoop } // Index skipped... for index0 < s-1 { cv0 := load6432(src, index0) cv1 := cv0 >> 8 h0 := hashLen(cv0, betterLongTableBits, betterLongLen) off := index0 + e.cur e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} e.markLongShardDirty(h0) h1 := hashLen(cv1, betterShortTableBits, betterShortLen) e.table[h1] = tableEntry{offset: off + 1, val: uint32(cv1)} e.markShortShardDirty(h1) index0 += 2 } cv = load6432(src, s) // Swap offsets offset1, offset2 = offset2, offset1 continue } } // Find the offsets of our two matches. coffsetL := candidateL.offset - e.cur coffsetLP := candidateL.prev - e.cur // Check if we have a long match. if s-coffsetL < e.maxMatchOff && cv == load6432(src, coffsetL) { // Found a long match, at least 8 bytes. matched = e.matchlen(s+8, coffsetL+8, src) + 8 t = coffsetL if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } if s-coffsetLP < e.maxMatchOff && cv == load6432(src, coffsetLP) { // Found a long match, at least 8 bytes. prevMatch := e.matchlen(s+8, coffsetLP+8, src) + 8 if prevMatch > matched { matched = prevMatch t = coffsetLP } if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } } break } // Check if we have a long match on prev. if s-coffsetLP < e.maxMatchOff && cv == load6432(src, coffsetLP) { // Found a long match, at least 8 bytes. matched = e.matchlen(s+8, coffsetLP+8, src) + 8 t = coffsetLP if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } break } coffsetS := candidateS.offset - e.cur // Check if we have a short match. if s-coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { // found a regular match matched = e.matchlen(s+4, coffsetS+4, src) + 4 // See if we can find a long match at s+1 const checkAt = 1 cv := load6432(src, s+checkAt) nextHashL = hashLen(cv, betterLongTableBits, betterLongLen) candidateL = e.longTable[nextHashL] coffsetL = candidateL.offset - e.cur // We can store it, since we have at least a 4 byte match. e.longTable[nextHashL] = prevEntry{offset: s + checkAt + e.cur, prev: candidateL.offset} e.markLongShardDirty(nextHashL) if s-coffsetL < e.maxMatchOff && cv == load6432(src, coffsetL) { // Found a long match, at least 8 bytes. matchedNext := e.matchlen(s+8+checkAt, coffsetL+8, src) + 8 if matchedNext > matched { t = coffsetL s += checkAt matched = matchedNext if debugMatches { println("long match (after short)") } break } } // Check prev long... coffsetL = candidateL.prev - e.cur if s-coffsetL < e.maxMatchOff && cv == load6432(src, coffsetL) { // Found a long match, at least 8 bytes. matchedNext := e.matchlen(s+8+checkAt, coffsetL+8, src) + 8 if matchedNext > matched { t = coffsetL s += checkAt matched = matchedNext if debugMatches { println("prev long match (after short)") } break } } t = coffsetS if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugAsserts && t < 0 { panic("t<0") } if debugMatches { println("short match") } break } // No match found, move forward in input. s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // Try to find a better match by searching for a long match at the end of the current best match if s+matched < sLimit { nextHashL := hashLen(load6432(src, s+matched), betterLongTableBits, betterLongLen) cv := load3232(src, s) candidateL := e.longTable[nextHashL] coffsetL := candidateL.offset - e.cur - matched if coffsetL >= 0 && coffsetL < s && s-coffsetL < e.maxMatchOff && cv == load3232(src, coffsetL) { // Found a long match, at least 4 bytes. matchedNext := e.matchlen(s+4, coffsetL+4, src) + 4 if matchedNext > matched { t = coffsetL matched = matchedNext if debugMatches { println("long match at end-of-match") } } } // Check prev long... if true { coffsetL = candidateL.prev - e.cur - matched if coffsetL >= 0 && coffsetL < s && s-coffsetL < e.maxMatchOff && cv == load3232(src, coffsetL) { // Found a long match, at least 4 bytes. matchedNext := e.matchlen(s+4, coffsetL+4, src) + 4 if matchedNext > matched { t = coffsetL matched = matchedNext if debugMatches { println("prev long match at end-of-match") } } } } } // A match has been found. Update recent offsets. offset2 = offset1 offset1 = s - t if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && canRepeat && int(offset1) > len(src) { panic("invalid offset") } // Extend the n-byte match as long as possible. l := matched // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { s-- t-- l++ } // Write our sequence var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } // Index match start+1 (long) -> s - 1 index0 := s - l + 1 for index0 < s-1 { cv0 := load6432(src, index0) cv1 := cv0 >> 8 h0 := hashLen(cv0, betterLongTableBits, betterLongLen) off := index0 + e.cur e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset} e.markLongShardDirty(h0) h1 := hashLen(cv1, betterShortTableBits, betterShortLen) e.table[h1] = tableEntry{offset: off + 1, val: uint32(cv1)} e.markShortShardDirty(h1) index0 += 2 } cv = load6432(src, s) if !canRepeat { continue } // Check offset 2 for { o2 := s - offset2 if load3232(src, o2) != uint32(cv) { // Do regular search break } // Store this, since we have it. nextHashL := hashLen(cv, betterLongTableBits, betterLongLen) nextHashS := hashLen(cv, betterShortTableBits, betterShortLen) // We have at least 4 byte match. // No need to check backwards. We come straight from a match l := 4 + e.matchlen(s+4, o2+4, src) e.longTable[nextHashL] = prevEntry{offset: s + e.cur, prev: e.longTable[nextHashL].offset} e.markLongShardDirty(nextHashL) e.table[nextHashS] = tableEntry{offset: s + e.cur, val: uint32(cv)} e.markShortShardDirty(nextHashS) seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { // Finished break encodeLoop } cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } blk.recentOffsets[0] = uint32(offset1) blk.recentOffsets[1] = uint32(offset2) if debugEncoder { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } } // ResetDict will reset and set a dictionary if not nil func (e *betterFastEncoder) Reset(d *dict, singleBlock bool) { e.resetBase(d, singleBlock) if d != nil { panic("betterFastEncoder: Reset with dict") } } // ResetDict will reset and set a dictionary if not nil func (e *betterFastEncoderDict) Reset(d *dict, singleBlock bool) { e.resetBase(d, singleBlock) if d == nil { return } // Init or copy dict table if len(e.dictTable) != len(e.table) || d.id != e.lastDictID { if len(e.dictTable) != len(e.table) { e.dictTable = make([]tableEntry, len(e.table)) } end := int32(len(d.content)) - 8 + e.maxMatchOff for i := e.maxMatchOff; i < end; i += 4 { const hashLog = betterShortTableBits cv := load6432(d.content, i-e.maxMatchOff) nextHash := hashLen(cv, hashLog, betterShortLen) // 0 -> 4 nextHash1 := hashLen(cv>>8, hashLog, betterShortLen) // 1 -> 5 nextHash2 := hashLen(cv>>16, hashLog, betterShortLen) // 2 -> 6 nextHash3 := hashLen(cv>>24, hashLog, betterShortLen) // 3 -> 7 e.dictTable[nextHash] = tableEntry{ val: uint32(cv), offset: i, } e.dictTable[nextHash1] = tableEntry{ val: uint32(cv >> 8), offset: i + 1, } e.dictTable[nextHash2] = tableEntry{ val: uint32(cv >> 16), offset: i + 2, } e.dictTable[nextHash3] = tableEntry{ val: uint32(cv >> 24), offset: i + 3, } } e.lastDictID = d.id e.allDirty = true } // Init or copy dict table if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID { if len(e.dictLongTable) != len(e.longTable) { e.dictLongTable = make([]prevEntry, len(e.longTable)) } if len(d.content) >= 8 { cv := load6432(d.content, 0) h := hashLen(cv, betterLongTableBits, betterLongLen) e.dictLongTable[h] = prevEntry{ offset: e.maxMatchOff, prev: e.dictLongTable[h].offset, } end := int32(len(d.content)) - 8 + e.maxMatchOff off := 8 // First to read for i := e.maxMatchOff + 1; i < end; i++ { cv = cv>>8 | (uint64(d.content[off]) << 56) h := hashLen(cv, betterLongTableBits, betterLongLen) e.dictLongTable[h] = prevEntry{ offset: i, prev: e.dictLongTable[h].offset, } off++ } } e.lastDictID = d.id e.allDirty = true } // Reset table to initial state { dirtyShardCnt := 0 if !e.allDirty { for i := range e.shortTableShardDirty { if e.shortTableShardDirty[i] { dirtyShardCnt++ } } } const shardCnt = betterShortTableShardCnt const shardSize = betterShortTableShardSize if e.allDirty || dirtyShardCnt > shardCnt*4/6 { copy(e.table[:], e.dictTable) for i := range e.shortTableShardDirty { e.shortTableShardDirty[i] = false } } else { for i := range e.shortTableShardDirty { if !e.shortTableShardDirty[i] { continue } copy(e.table[i*shardSize:(i+1)*shardSize], e.dictTable[i*shardSize:(i+1)*shardSize]) e.shortTableShardDirty[i] = false } } } { dirtyShardCnt := 0 if !e.allDirty { for i := range e.shortTableShardDirty { if e.shortTableShardDirty[i] { dirtyShardCnt++ } } } const shardCnt = betterLongTableShardCnt const shardSize = betterLongTableShardSize if e.allDirty || dirtyShardCnt > shardCnt*4/6 { copy(e.longTable[:], e.dictLongTable) for i := range e.longTableShardDirty { e.longTableShardDirty[i] = false } } else { for i := range e.longTableShardDirty { if !e.longTableShardDirty[i] { continue } copy(e.longTable[i*shardSize:(i+1)*shardSize], e.dictLongTable[i*shardSize:(i+1)*shardSize]) e.longTableShardDirty[i] = false } } } e.cur = e.maxMatchOff e.allDirty = false } func (e *betterFastEncoderDict) markLongShardDirty(entryNum uint32) { e.longTableShardDirty[entryNum/betterLongTableShardSize] = true } func (e *betterFastEncoderDict) markShortShardDirty(entryNum uint32) { e.shortTableShardDirty[entryNum/betterShortTableShardSize] = true }