// Copyright 2019+ Klaus Post. All rights reserved. // License information can be found in the LICENSE file. // Based on work by Yann Collet, released under BSD License. package zstd import "fmt" const ( dFastLongTableBits = 17 // Bits used in the long match table dFastLongTableSize = 1 << dFastLongTableBits // Size of the table dFastLongTableMask = dFastLongTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. dFastLongLen = 8 // Bytes used for table hash dLongTableShardCnt = 1 << (dFastLongTableBits - dictShardBits) // Number of shards in the table dLongTableShardSize = dFastLongTableSize / tableShardCnt // Size of an individual shard dFastShortTableBits = tableBits // Bits used in the short match table dFastShortTableSize = 1 << dFastShortTableBits // Size of the table dFastShortTableMask = dFastShortTableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. dFastShortLen = 5 // Bytes used for table hash ) type doubleFastEncoder struct { fastEncoder longTable [dFastLongTableSize]tableEntry } type doubleFastEncoderDict struct { fastEncoderDict longTable [dFastLongTableSize]tableEntry dictLongTable []tableEntry longTableShardDirty [dLongTableShardCnt]bool } // Encode mimmics functionality in zstd_dfast.c func (e *doubleFastEncoder) Encode(blk *blockEnc, src []byte) { const ( // Input margin is the number of bytes we read (8) // and the maximum we will read ahead (2) inputMargin = 8 + 2 minNonLiteralBlockSize = 16 ) // Protect against e.cur wraparound. for e.cur >= bufferReset { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } for i := range e.longTable[:] { e.longTable[i] = tableEntry{} } e.cur = e.maxMatchOff break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff for i := range e.table[:] { v := e.table[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.table[i].offset = v } for i := range e.longTable[:] { v := e.longTable[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.longTable[i].offset = v } e.cur = e.maxMatchOff break } s := e.addBlock(src) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } // Override src src = e.hist sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 1. const stepSize = 1 const kSearchStrength = 8 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debugEncoder { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { var t int32 // We allow the encoder to optionally turn off repeat offsets across blocks canRepeat := len(blk.sequences) > 2 for { if debugAsserts && canRepeat && offset1 == 0 { panic("offset0 was 0") } nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) candidateL := e.longTable[nextHashL] candidateS := e.table[nextHashS] const repOff = 1 repIndex := s - offset1 + repOff entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.table[nextHashS] = entry if canRepeat { if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) { // Consider history as well. var seq seq lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) s += lenght + repOff nextEmit = s if s >= sLimit { if debugEncoder { println("repeat ended", s, lenght) } break encodeLoop } cv = load6432(src, s) continue } } // Find the offsets of our two matches. coffsetL := s - (candidateL.offset - e.cur) coffsetS := s - (candidateS.offset - e.cur) // Check if we have a long match. if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } break } // Check if we have a short match. if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { // found a regular match // See if we can find a long match at s+1 const checkAt = 1 cv := load6432(src, s+checkAt) nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen) candidateL = e.longTable[nextHashL] coffsetL = s - (candidateL.offset - e.cur) + checkAt // We can store it, since we have at least a 4 byte match. e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)} if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur s += checkAt if debugMatches { println("long match (after short)") } break } t = candidateS.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugAsserts && t < 0 { panic("t<0") } if debugMatches { println("short match") } break } // No match found, move forward in input. s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // A 4-byte match has been found. Update recent offsets. // We'll later see if more than 4 bytes. offset2 = offset1 offset1 = s - t if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && canRepeat && int(offset1) > len(src) { panic("invalid offset") } // Extend the 4-byte match as long as possible. l := e.matchlen(s+4, t+4, src) + 4 // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { s-- t-- l++ } // Write our sequence var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } // Index match start+1 (long) and start+2 (short) index0 := s - l + 1 // Index match end-2 (long) and end-1 (short) index1 := s - 2 cv0 := load6432(src, index0) cv1 := load6432(src, index1) te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)} te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)} e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0 e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1 cv0 >>= 8 cv1 >>= 8 te0.offset++ te1.offset++ te0.val = uint32(cv0) te1.val = uint32(cv1) e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0 e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1 cv = load6432(src, s) if !canRepeat { continue } // Check offset 2 for { o2 := s - offset2 if load3232(src, o2) != uint32(cv) { // Do regular search break } // Store this, since we have it. nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) // We have at least 4 byte match. // No need to check backwards. We come straight from a match l := 4 + e.matchlen(s+4, o2+4, src) entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.table[nextHashS] = entry seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { // Finished break encodeLoop } cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } blk.recentOffsets[0] = uint32(offset1) blk.recentOffsets[1] = uint32(offset2) if debugEncoder { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } } // EncodeNoHist will encode a block with no history and no following blocks. // Most notable difference is that src will not be copied for history and // we do not need to check for max match length. func (e *doubleFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) { const ( // Input margin is the number of bytes we read (8) // and the maximum we will read ahead (2) inputMargin = 8 + 2 minNonLiteralBlockSize = 16 ) // Protect against e.cur wraparound. if e.cur >= bufferReset { for i := range e.table[:] { e.table[i] = tableEntry{} } for i := range e.longTable[:] { e.longTable[i] = tableEntry{} } e.cur = e.maxMatchOff } s := int32(0) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } // Override src sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 1. const stepSize = 1 const kSearchStrength = 8 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debugEncoder { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { var t int32 for { nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) candidateL := e.longTable[nextHashL] candidateS := e.table[nextHashS] const repOff = 1 repIndex := s - offset1 + repOff entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.table[nextHashS] = entry if len(blk.sequences) > 2 { if load3232(src, repIndex) == uint32(cv>>(repOff*8)) { // Consider history as well. var seq seq //length := 4 + e.matchlen(s+4+repOff, repIndex+4, src) length := 4 + int32(matchLen(src[s+4+repOff:], src[repIndex+4:])) seq.matchLen = uint32(length - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) s += length + repOff nextEmit = s if s >= sLimit { if debugEncoder { println("repeat ended", s, length) } break encodeLoop } cv = load6432(src, s) continue } } // Find the offsets of our two matches. coffsetL := s - (candidateL.offset - e.cur) coffsetS := s - (candidateS.offset - e.cur) // Check if we have a long match. if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d). cur: %d", s, t, e.cur)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } break } // Check if we have a short match. if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { // found a regular match // See if we can find a long match at s+1 const checkAt = 1 cv := load6432(src, s+checkAt) nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen) candidateL = e.longTable[nextHashL] coffsetL = s - (candidateL.offset - e.cur) + checkAt // We can store it, since we have at least a 4 byte match. e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)} if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur s += checkAt if debugMatches { println("long match (after short)") } break } t = candidateS.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugAsserts && t < 0 { panic("t<0") } if debugMatches { println("short match") } break } // No match found, move forward in input. s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // A 4-byte match has been found. Update recent offsets. // We'll later see if more than 4 bytes. offset2 = offset1 offset1 = s - t if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } // Extend the 4-byte match as long as possible. //l := e.matchlen(s+4, t+4, src) + 4 l := int32(matchLen(src[s+4:], src[t+4:])) + 4 // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] { s-- t-- l++ } // Write our sequence var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } // Index match start+1 (long) and start+2 (short) index0 := s - l + 1 // Index match end-2 (long) and end-1 (short) index1 := s - 2 cv0 := load6432(src, index0) cv1 := load6432(src, index1) te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)} te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)} e.longTable[hashLen(cv0, dFastLongTableBits, dFastLongLen)] = te0 e.longTable[hashLen(cv1, dFastLongTableBits, dFastLongLen)] = te1 cv0 >>= 8 cv1 >>= 8 te0.offset++ te1.offset++ te0.val = uint32(cv0) te1.val = uint32(cv1) e.table[hashLen(cv0, dFastShortTableBits, dFastShortLen)] = te0 e.table[hashLen(cv1, dFastShortTableBits, dFastShortLen)] = te1 cv = load6432(src, s) if len(blk.sequences) <= 2 { continue } // Check offset 2 for { o2 := s - offset2 if load3232(src, o2) != uint32(cv) { // Do regular search break } // Store this, since we have it. nextHashS := hashLen(cv1>>8, dFastShortTableBits, dFastShortLen) nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) // We have at least 4 byte match. // No need to check backwards. We come straight from a match //l := 4 + e.matchlen(s+4, o2+4, src) l := 4 + int32(matchLen(src[s+4:], src[o2+4:])) entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.table[nextHashS] = entry seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { // Finished break encodeLoop } cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } if debugEncoder { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } // We do not store history, so we must offset e.cur to avoid false matches for next user. if e.cur < bufferReset { e.cur += int32(len(src)) } } // Encode will encode the content, with a dictionary if initialized for it. func (e *doubleFastEncoderDict) Encode(blk *blockEnc, src []byte) { const ( // Input margin is the number of bytes we read (8) // and the maximum we will read ahead (2) inputMargin = 8 + 2 minNonLiteralBlockSize = 16 ) // Protect against e.cur wraparound. for e.cur >= bufferReset { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } for i := range e.longTable[:] { e.longTable[i] = tableEntry{} } e.markAllShardsDirty() e.cur = e.maxMatchOff break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff for i := range e.table[:] { v := e.table[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.table[i].offset = v } for i := range e.longTable[:] { v := e.longTable[i].offset if v < minOff { v = 0 } else { v = v - e.cur + e.maxMatchOff } e.longTable[i].offset = v } e.markAllShardsDirty() e.cur = e.maxMatchOff break } s := e.addBlock(src) blk.size = len(src) if len(src) < minNonLiteralBlockSize { blk.extraLits = len(src) blk.literals = blk.literals[:len(src)] copy(blk.literals, src) return } // Override src src = e.hist sLimit := int32(len(src)) - inputMargin // stepSize is the number of bytes to skip on every main loop iteration. // It should be >= 1. const stepSize = 1 const kSearchStrength = 8 // nextEmit is where in src the next emitLiteral should start from. nextEmit := s cv := load6432(src, s) // Relative offsets offset1 := int32(blk.recentOffsets[0]) offset2 := int32(blk.recentOffsets[1]) addLiterals := func(s *seq, until int32) { if until == nextEmit { return } blk.literals = append(blk.literals, src[nextEmit:until]...) s.litLen = uint32(until - nextEmit) } if debugEncoder { println("recent offsets:", blk.recentOffsets) } encodeLoop: for { var t int32 // We allow the encoder to optionally turn off repeat offsets across blocks canRepeat := len(blk.sequences) > 2 for { if debugAsserts && canRepeat && offset1 == 0 { panic("offset0 was 0") } nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) candidateL := e.longTable[nextHashL] candidateS := e.table[nextHashS] const repOff = 1 repIndex := s - offset1 + repOff entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.markLongShardDirty(nextHashL) e.table[nextHashS] = entry e.markShardDirty(nextHashS) if canRepeat { if repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>(repOff*8)) { // Consider history as well. var seq seq lenght := 4 + e.matchlen(s+4+repOff, repIndex+4, src) seq.matchLen = uint32(lenght - zstdMinMatch) // We might be able to match backwards. // Extend as long as we can. start := s + repOff // We end the search early, so we don't risk 0 literals // and have to do special offset treatment. startLimit := nextEmit + 1 tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 { repIndex-- start-- seq.matchLen++ } addLiterals(&seq, start) // rep 0 seq.offset = 1 if debugSequences { println("repeat sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) s += lenght + repOff nextEmit = s if s >= sLimit { if debugEncoder { println("repeat ended", s, lenght) } break encodeLoop } cv = load6432(src, s) continue } } // Find the offsets of our two matches. coffsetL := s - (candidateL.offset - e.cur) coffsetS := s - (candidateS.offset - e.cur) // Check if we have a long match. if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugMatches { println("long match") } break } // Check if we have a short match. if coffsetS < e.maxMatchOff && uint32(cv) == candidateS.val { // found a regular match // See if we can find a long match at s+1 const checkAt = 1 cv := load6432(src, s+checkAt) nextHashL = hashLen(cv, dFastLongTableBits, dFastLongLen) candidateL = e.longTable[nextHashL] coffsetL = s - (candidateL.offset - e.cur) + checkAt // We can store it, since we have at least a 4 byte match. e.longTable[nextHashL] = tableEntry{offset: s + checkAt + e.cur, val: uint32(cv)} e.markLongShardDirty(nextHashL) if coffsetL < e.maxMatchOff && uint32(cv) == candidateL.val { // Found a long match, likely at least 8 bytes. // Reference encoder checks all 8 bytes, we only check 4, // but the likelihood of both the first 4 bytes and the hash matching should be enough. t = candidateL.offset - e.cur s += checkAt if debugMatches { println("long match (after short)") } break } t = candidateS.offset - e.cur if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && s-t > e.maxMatchOff { panic("s - t >e.maxMatchOff") } if debugAsserts && t < 0 { panic("t<0") } if debugMatches { println("short match") } break } // No match found, move forward in input. s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1)) if s >= sLimit { break encodeLoop } cv = load6432(src, s) } // A 4-byte match has been found. Update recent offsets. // We'll later see if more than 4 bytes. offset2 = offset1 offset1 = s - t if debugAsserts && s <= t { panic(fmt.Sprintf("s (%d) <= t (%d)", s, t)) } if debugAsserts && canRepeat && int(offset1) > len(src) { panic("invalid offset") } // Extend the 4-byte match as long as possible. l := e.matchlen(s+4, t+4, src) + 4 // Extend backwards tMin := s - e.maxMatchOff if tMin < 0 { tMin = 0 } for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength { s-- t-- l++ } // Write our sequence var seq seq seq.litLen = uint32(s - nextEmit) seq.matchLen = uint32(l - zstdMinMatch) if seq.litLen > 0 { blk.literals = append(blk.literals, src[nextEmit:s]...) } seq.offset = uint32(s-t) + 3 s += l if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) nextEmit = s if s >= sLimit { break encodeLoop } // Index match start+1 (long) and start+2 (short) index0 := s - l + 1 // Index match end-2 (long) and end-1 (short) index1 := s - 2 cv0 := load6432(src, index0) cv1 := load6432(src, index1) te0 := tableEntry{offset: index0 + e.cur, val: uint32(cv0)} te1 := tableEntry{offset: index1 + e.cur, val: uint32(cv1)} longHash1 := hashLen(cv0, dFastLongTableBits, dFastLongLen) longHash2 := hashLen(cv1, dFastLongTableBits, dFastLongLen) e.longTable[longHash1] = te0 e.longTable[longHash2] = te1 e.markLongShardDirty(longHash1) e.markLongShardDirty(longHash2) cv0 >>= 8 cv1 >>= 8 te0.offset++ te1.offset++ te0.val = uint32(cv0) te1.val = uint32(cv1) hashVal1 := hashLen(cv0, dFastShortTableBits, dFastShortLen) hashVal2 := hashLen(cv1, dFastShortTableBits, dFastShortLen) e.table[hashVal1] = te0 e.markShardDirty(hashVal1) e.table[hashVal2] = te1 e.markShardDirty(hashVal2) cv = load6432(src, s) if !canRepeat { continue } // Check offset 2 for { o2 := s - offset2 if load3232(src, o2) != uint32(cv) { // Do regular search break } // Store this, since we have it. nextHashL := hashLen(cv, dFastLongTableBits, dFastLongLen) nextHashS := hashLen(cv, dFastShortTableBits, dFastShortLen) // We have at least 4 byte match. // No need to check backwards. We come straight from a match l := 4 + e.matchlen(s+4, o2+4, src) entry := tableEntry{offset: s + e.cur, val: uint32(cv)} e.longTable[nextHashL] = entry e.markLongShardDirty(nextHashL) e.table[nextHashS] = entry e.markShardDirty(nextHashS) seq.matchLen = uint32(l) - zstdMinMatch seq.litLen = 0 // Since litlen is always 0, this is offset 1. seq.offset = 1 s += l nextEmit = s if debugSequences { println("sequence", seq, "next s:", s) } blk.sequences = append(blk.sequences, seq) // Swap offset 1 and 2. offset1, offset2 = offset2, offset1 if s >= sLimit { // Finished break encodeLoop } cv = load6432(src, s) } } if int(nextEmit) < len(src) { blk.literals = append(blk.literals, src[nextEmit:]...) blk.extraLits = len(src) - int(nextEmit) } blk.recentOffsets[0] = uint32(offset1) blk.recentOffsets[1] = uint32(offset2) if debugEncoder { println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits) } // If we encoded more than 64K mark all dirty. if len(src) > 64<<10 { e.markAllShardsDirty() } } // ResetDict will reset and set a dictionary if not nil func (e *doubleFastEncoder) Reset(d *dict, singleBlock bool) { e.fastEncoder.Reset(d, singleBlock) if d != nil { panic("doubleFastEncoder: Reset with dict not supported") } } // ResetDict will reset and set a dictionary if not nil func (e *doubleFastEncoderDict) Reset(d *dict, singleBlock bool) { allDirty := e.allDirty e.fastEncoderDict.Reset(d, singleBlock) if d == nil { return } // Init or copy dict table if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID { if len(e.dictLongTable) != len(e.longTable) { e.dictLongTable = make([]tableEntry, len(e.longTable)) } if len(d.content) >= 8 { cv := load6432(d.content, 0) e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{ val: uint32(cv), offset: e.maxMatchOff, } end := int32(len(d.content)) - 8 + e.maxMatchOff for i := e.maxMatchOff + 1; i < end; i++ { cv = cv>>8 | (uint64(d.content[i-e.maxMatchOff+7]) << 56) e.dictLongTable[hashLen(cv, dFastLongTableBits, dFastLongLen)] = tableEntry{ val: uint32(cv), offset: i, } } } e.lastDictID = d.id e.allDirty = true } // Reset table to initial state e.cur = e.maxMatchOff dirtyShardCnt := 0 if !allDirty { for i := range e.longTableShardDirty { if e.longTableShardDirty[i] { dirtyShardCnt++ } } } if allDirty || dirtyShardCnt > dLongTableShardCnt/2 { //copy(e.longTable[:], e.dictLongTable) e.longTable = *(*[dFastLongTableSize]tableEntry)(e.dictLongTable) for i := range e.longTableShardDirty { e.longTableShardDirty[i] = false } return } for i := range e.longTableShardDirty { if !e.longTableShardDirty[i] { continue } // copy(e.longTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize], e.dictLongTable[i*dLongTableShardSize:(i+1)*dLongTableShardSize]) *(*[dLongTableShardSize]tableEntry)(e.longTable[i*dLongTableShardSize:]) = *(*[dLongTableShardSize]tableEntry)(e.dictLongTable[i*dLongTableShardSize:]) e.longTableShardDirty[i] = false } } func (e *doubleFastEncoderDict) markLongShardDirty(entryNum uint32) { e.longTableShardDirty[entryNum/dLongTableShardSize] = true }