// Copyright GoFrame Author(https://goframe.org). All Rights Reserved. // // This Source Code Form is subject to the terms of the MIT License. // If a copy of the MIT was not distributed with this file, // You can obtain one at https://github.com/gogf/gf. package garray import ( "bytes" "fmt" "math" "sort" "github.com/gogf/gf/v2/errors/gcode" "github.com/gogf/gf/v2/errors/gerror" "github.com/gogf/gf/v2/internal/json" "github.com/gogf/gf/v2/internal/rwmutex" "github.com/gogf/gf/v2/util/gconv" "github.com/gogf/gf/v2/util/grand" ) // IntArray is a golang int array with rich features. // It contains a concurrent-safe/unsafe switch, which should be set // when its initialization and cannot be changed then. type IntArray struct { mu rwmutex.RWMutex array []int } // NewIntArray creates and returns an empty array. // The parameter `safe` is used to specify whether using array in concurrent-safety, // which is false in default. func NewIntArray(safe ...bool) *IntArray { return NewIntArraySize(0, 0, safe...) } // NewIntArraySize create and returns an array with given size and cap. // The parameter `safe` is used to specify whether using array in concurrent-safety, // which is false in default. func NewIntArraySize(size int, cap int, safe ...bool) *IntArray { return &IntArray{ mu: rwmutex.Create(safe...), array: make([]int, size, cap), } } // NewIntArrayRange creates and returns an array by a range from `start` to `end` // with step value `step`. func NewIntArrayRange(start, end, step int, safe ...bool) *IntArray { if step == 0 { panic(fmt.Sprintf(`invalid step value: %d`, step)) } slice := make([]int, 0) index := 0 for i := start; i <= end; i += step { slice = append(slice, i) index++ } return NewIntArrayFrom(slice, safe...) } // NewIntArrayFrom creates and returns an array with given slice `array`. // The parameter `safe` is used to specify whether using array in concurrent-safety, // which is false in default. func NewIntArrayFrom(array []int, safe ...bool) *IntArray { return &IntArray{ mu: rwmutex.Create(safe...), array: array, } } // NewIntArrayFromCopy creates and returns an array from a copy of given slice `array`. // The parameter `safe` is used to specify whether using array in concurrent-safety, // which is false in default. func NewIntArrayFromCopy(array []int, safe ...bool) *IntArray { newArray := make([]int, len(array)) copy(newArray, array) return &IntArray{ mu: rwmutex.Create(safe...), array: newArray, } } // At returns the value by the specified index. // If the given `index` is out of range of the array, it returns `0`. func (a *IntArray) At(index int) (value int) { value, _ = a.Get(index) return } // Get returns the value by the specified index. // If the given `index` is out of range of the array, the `found` is false. func (a *IntArray) Get(index int) (value int, found bool) { a.mu.RLock() defer a.mu.RUnlock() if index < 0 || index >= len(a.array) { return 0, false } return a.array[index], true } // Set sets value to specified index. func (a *IntArray) Set(index int, value int) error { a.mu.Lock() defer a.mu.Unlock() if index < 0 || index >= len(a.array) { return gerror.NewCodef(gcode.CodeInvalidParameter, "index %d out of array range %d", index, len(a.array)) } a.array[index] = value return nil } // SetArray sets the underlying slice array with the given `array`. func (a *IntArray) SetArray(array []int) *IntArray { a.mu.Lock() defer a.mu.Unlock() a.array = array return a } // Replace replaces the array items by given `array` from the beginning of array. func (a *IntArray) Replace(array []int) *IntArray { a.mu.Lock() defer a.mu.Unlock() max := len(array) if max > len(a.array) { max = len(a.array) } for i := 0; i < max; i++ { a.array[i] = array[i] } return a } // Sum returns the sum of values in an array. func (a *IntArray) Sum() (sum int) { a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { sum += v } return } // Sort sorts the array in increasing order. // The parameter `reverse` controls whether sort in increasing order(default) or decreasing order. func (a *IntArray) Sort(reverse ...bool) *IntArray { a.mu.Lock() defer a.mu.Unlock() if len(reverse) > 0 && reverse[0] { sort.Slice(a.array, func(i, j int) bool { return a.array[i] >= a.array[j] }) } else { sort.Ints(a.array) } return a } // SortFunc sorts the array by custom function `less`. func (a *IntArray) SortFunc(less func(v1, v2 int) bool) *IntArray { a.mu.Lock() defer a.mu.Unlock() sort.Slice(a.array, func(i, j int) bool { return less(a.array[i], a.array[j]) }) return a } // InsertBefore inserts the `values` to the front of `index`. func (a *IntArray) InsertBefore(index int, values ...int) error { a.mu.Lock() defer a.mu.Unlock() if index < 0 || index >= len(a.array) { return gerror.NewCodef(gcode.CodeInvalidParameter, "index %d out of array range %d", index, len(a.array)) } rear := append([]int{}, a.array[index:]...) a.array = append(a.array[0:index], values...) a.array = append(a.array, rear...) return nil } // InsertAfter inserts the `value` to the back of `index`. func (a *IntArray) InsertAfter(index int, values ...int) error { a.mu.Lock() defer a.mu.Unlock() if index < 0 || index >= len(a.array) { return gerror.NewCodef(gcode.CodeInvalidParameter, "index %d out of array range %d", index, len(a.array)) } rear := append([]int{}, a.array[index+1:]...) a.array = append(a.array[0:index+1], values...) a.array = append(a.array, rear...) return nil } // Remove removes an item by index. // If the given `index` is out of range of the array, the `found` is false. func (a *IntArray) Remove(index int) (value int, found bool) { a.mu.Lock() defer a.mu.Unlock() return a.doRemoveWithoutLock(index) } // doRemoveWithoutLock removes an item by index without lock. func (a *IntArray) doRemoveWithoutLock(index int) (value int, found bool) { if index < 0 || index >= len(a.array) { return 0, false } // Determine array boundaries when deleting to improve deletion efficiency. if index == 0 { value := a.array[0] a.array = a.array[1:] return value, true } else if index == len(a.array)-1 { value := a.array[index] a.array = a.array[:index] return value, true } // If it is a non-boundary delete, // it will involve the creation of an array, // then the deletion is less efficient. value = a.array[index] a.array = append(a.array[:index], a.array[index+1:]...) return value, true } // RemoveValue removes an item by value. // It returns true if value is found in the array, or else false if not found. func (a *IntArray) RemoveValue(value int) bool { a.mu.Lock() defer a.mu.Unlock() if i := a.doSearchWithoutLock(value); i != -1 { a.doRemoveWithoutLock(i) return true } return false } // RemoveValues removes multiple items by `values`. func (a *IntArray) RemoveValues(values ...int) { a.mu.Lock() defer a.mu.Unlock() for _, value := range values { if i := a.doSearchWithoutLock(value); i != -1 { a.doRemoveWithoutLock(i) } } } // PushLeft pushes one or multiple items to the beginning of array. func (a *IntArray) PushLeft(value ...int) *IntArray { a.mu.Lock() a.array = append(value, a.array...) a.mu.Unlock() return a } // PushRight pushes one or multiple items to the end of array. // It equals to Append. func (a *IntArray) PushRight(value ...int) *IntArray { a.mu.Lock() a.array = append(a.array, value...) a.mu.Unlock() return a } // PopLeft pops and returns an item from the beginning of array. // Note that if the array is empty, the `found` is false. func (a *IntArray) PopLeft() (value int, found bool) { a.mu.Lock() defer a.mu.Unlock() if len(a.array) == 0 { return 0, false } value = a.array[0] a.array = a.array[1:] return value, true } // PopRight pops and returns an item from the end of array. // Note that if the array is empty, the `found` is false. func (a *IntArray) PopRight() (value int, found bool) { a.mu.Lock() defer a.mu.Unlock() index := len(a.array) - 1 if index < 0 { return 0, false } value = a.array[index] a.array = a.array[:index] return value, true } // PopRand randomly pops and return an item out of array. // Note that if the array is empty, the `found` is false. func (a *IntArray) PopRand() (value int, found bool) { a.mu.Lock() defer a.mu.Unlock() return a.doRemoveWithoutLock(grand.Intn(len(a.array))) } // PopRands randomly pops and returns `size` items out of array. // If the given `size` is greater than size of the array, it returns all elements of the array. // Note that if given `size` <= 0 or the array is empty, it returns nil. func (a *IntArray) PopRands(size int) []int { a.mu.Lock() defer a.mu.Unlock() if size <= 0 || len(a.array) == 0 { return nil } if size >= len(a.array) { size = len(a.array) } array := make([]int, size) for i := 0; i < size; i++ { array[i], _ = a.doRemoveWithoutLock(grand.Intn(len(a.array))) } return array } // PopLefts pops and returns `size` items from the beginning of array. // If the given `size` is greater than size of the array, it returns all elements of the array. // Note that if given `size` <= 0 or the array is empty, it returns nil. func (a *IntArray) PopLefts(size int) []int { a.mu.Lock() defer a.mu.Unlock() if size <= 0 || len(a.array) == 0 { return nil } if size >= len(a.array) { array := a.array a.array = a.array[:0] return array } value := a.array[0:size] a.array = a.array[size:] return value } // PopRights pops and returns `size` items from the end of array. // If the given `size` is greater than size of the array, it returns all elements of the array. // Note that if given `size` <= 0 or the array is empty, it returns nil. func (a *IntArray) PopRights(size int) []int { a.mu.Lock() defer a.mu.Unlock() if size <= 0 || len(a.array) == 0 { return nil } index := len(a.array) - size if index <= 0 { array := a.array a.array = a.array[:0] return array } value := a.array[index:] a.array = a.array[:index] return value } // Range picks and returns items by range, like array[start:end]. // Notice, if in concurrent-safe usage, it returns a copy of slice; // else a pointer to the underlying data. // // If `end` is negative, then the offset will start from the end of array. // If `end` is omitted, then the sequence will have everything from start up // until the end of the array. func (a *IntArray) Range(start int, end ...int) []int { a.mu.RLock() defer a.mu.RUnlock() offsetEnd := len(a.array) if len(end) > 0 && end[0] < offsetEnd { offsetEnd = end[0] } if start > offsetEnd { return nil } if start < 0 { start = 0 } array := ([]int)(nil) if a.mu.IsSafe() { array = make([]int, offsetEnd-start) copy(array, a.array[start:offsetEnd]) } else { array = a.array[start:offsetEnd] } return array } // SubSlice returns a slice of elements from the array as specified // by the `offset` and `size` parameters. // If in concurrent safe usage, it returns a copy of the slice; else a pointer. // // If offset is non-negative, the sequence will start at that offset in the array. // If offset is negative, the sequence will start that far from the end of the array. // // If length is given and is positive, then the sequence will have up to that many elements in it. // If the array is shorter than the length, then only the available array elements will be present. // If length is given and is negative then the sequence will stop that many elements from the end of the array. // If it is omitted, then the sequence will have everything from offset up until the end of the array. // // Any possibility crossing the left border of array, it will fail. func (a *IntArray) SubSlice(offset int, length ...int) []int { a.mu.RLock() defer a.mu.RUnlock() size := len(a.array) if len(length) > 0 { size = length[0] } if offset > len(a.array) { return nil } if offset < 0 { offset = len(a.array) + offset if offset < 0 { return nil } } if size < 0 { offset += size size = -size if offset < 0 { return nil } } end := offset + size if end > len(a.array) { end = len(a.array) size = len(a.array) - offset } if a.mu.IsSafe() { s := make([]int, size) copy(s, a.array[offset:]) return s } else { return a.array[offset:end] } } // Append is alias of PushRight,please See PushRight. func (a *IntArray) Append(value ...int) *IntArray { a.mu.Lock() a.array = append(a.array, value...) a.mu.Unlock() return a } // Len returns the length of array. func (a *IntArray) Len() int { a.mu.RLock() length := len(a.array) a.mu.RUnlock() return length } // Slice returns the underlying data of array. // Note that, if it's in concurrent-safe usage, it returns a copy of underlying data, // or else a pointer to the underlying data. func (a *IntArray) Slice() []int { array := ([]int)(nil) if a.mu.IsSafe() { a.mu.RLock() defer a.mu.RUnlock() array = make([]int, len(a.array)) copy(array, a.array) } else { array = a.array } return array } // Interfaces returns current array as []interface{}. func (a *IntArray) Interfaces() []interface{} { a.mu.RLock() defer a.mu.RUnlock() array := make([]interface{}, len(a.array)) for k, v := range a.array { array[k] = v } return array } // Clone returns a new array, which is a copy of current array. func (a *IntArray) Clone() (newArray *IntArray) { a.mu.RLock() array := make([]int, len(a.array)) copy(array, a.array) a.mu.RUnlock() return NewIntArrayFrom(array, a.mu.IsSafe()) } // Clear deletes all items of current array. func (a *IntArray) Clear() *IntArray { a.mu.Lock() if len(a.array) > 0 { a.array = make([]int, 0) } a.mu.Unlock() return a } // Contains checks whether a value exists in the array. func (a *IntArray) Contains(value int) bool { return a.Search(value) != -1 } // Search searches array by `value`, returns the index of `value`, // or returns -1 if not exists. func (a *IntArray) Search(value int) int { a.mu.RLock() defer a.mu.RUnlock() return a.doSearchWithoutLock(value) } func (a *IntArray) doSearchWithoutLock(value int) int { if len(a.array) == 0 { return -1 } result := -1 for index, v := range a.array { if v == value { result = index break } } return result } // Unique uniques the array, clear repeated items. // Example: [1,1,2,3,2] -> [1,2,3] func (a *IntArray) Unique() *IntArray { a.mu.Lock() defer a.mu.Unlock() if len(a.array) == 0 { return a } var ( ok bool temp int uniqueSet = make(map[int]struct{}) uniqueArray = make([]int, 0, len(a.array)) ) for i := 0; i < len(a.array); i++ { temp = a.array[i] if _, ok = uniqueSet[temp]; ok { continue } uniqueSet[temp] = struct{}{} uniqueArray = append(uniqueArray, temp) } a.array = uniqueArray return a } // LockFunc locks writing by callback function `f`. func (a *IntArray) LockFunc(f func(array []int)) *IntArray { a.mu.Lock() defer a.mu.Unlock() f(a.array) return a } // RLockFunc locks reading by callback function `f`. func (a *IntArray) RLockFunc(f func(array []int)) *IntArray { a.mu.RLock() defer a.mu.RUnlock() f(a.array) return a } // Merge merges `array` into current array. // The parameter `array` can be any garray or slice type. // The difference between Merge and Append is Append supports only specified slice type, // but Merge supports more parameter types. func (a *IntArray) Merge(array interface{}) *IntArray { return a.Append(gconv.Ints(array)...) } // Fill fills an array with num entries of the value `value`, // keys starting at the `startIndex` parameter. func (a *IntArray) Fill(startIndex int, num int, value int) error { a.mu.Lock() defer a.mu.Unlock() if startIndex < 0 || startIndex > len(a.array) { return gerror.NewCodef(gcode.CodeInvalidParameter, "index %d out of array range %d", startIndex, len(a.array)) } for i := startIndex; i < startIndex+num; i++ { if i > len(a.array)-1 { a.array = append(a.array, value) } else { a.array[i] = value } } return nil } // Chunk splits an array into multiple arrays, // the size of each array is determined by `size`. // The last chunk may contain less than size elements. func (a *IntArray) Chunk(size int) [][]int { if size < 1 { return nil } a.mu.RLock() defer a.mu.RUnlock() length := len(a.array) chunks := int(math.Ceil(float64(length) / float64(size))) var n [][]int for i, end := 0, 0; chunks > 0; chunks-- { end = (i + 1) * size if end > length { end = length } n = append(n, a.array[i*size:end]) i++ } return n } // Pad pads array to the specified length with `value`. // If size is positive then the array is padded on the right, or negative on the left. // If the absolute value of `size` is less than or equal to the length of the array // then no padding takes place. func (a *IntArray) Pad(size int, value int) *IntArray { a.mu.Lock() defer a.mu.Unlock() if size == 0 || (size > 0 && size < len(a.array)) || (size < 0 && size > -len(a.array)) { return a } n := size if size < 0 { n = -size } n -= len(a.array) tmp := make([]int, n) for i := 0; i < n; i++ { tmp[i] = value } if size > 0 { a.array = append(a.array, tmp...) } else { a.array = append(tmp, a.array...) } return a } // Rand randomly returns one item from array(no deleting). func (a *IntArray) Rand() (value int, found bool) { a.mu.RLock() defer a.mu.RUnlock() if len(a.array) == 0 { return 0, false } return a.array[grand.Intn(len(a.array))], true } // Rands randomly returns `size` items from array(no deleting). func (a *IntArray) Rands(size int) []int { a.mu.RLock() defer a.mu.RUnlock() if size <= 0 || len(a.array) == 0 { return nil } array := make([]int, size) for i := 0; i < size; i++ { array[i] = a.array[grand.Intn(len(a.array))] } return array } // Shuffle randomly shuffles the array. func (a *IntArray) Shuffle() *IntArray { a.mu.Lock() defer a.mu.Unlock() for i, v := range grand.Perm(len(a.array)) { a.array[i], a.array[v] = a.array[v], a.array[i] } return a } // Reverse makes array with elements in reverse order. func (a *IntArray) Reverse() *IntArray { a.mu.Lock() defer a.mu.Unlock() for i, j := 0, len(a.array)-1; i < j; i, j = i+1, j-1 { a.array[i], a.array[j] = a.array[j], a.array[i] } return a } // Join joins array elements with a string `glue`. func (a *IntArray) Join(glue string) string { a.mu.RLock() defer a.mu.RUnlock() if len(a.array) == 0 { return "" } buffer := bytes.NewBuffer(nil) for k, v := range a.array { buffer.WriteString(gconv.String(v)) if k != len(a.array)-1 { buffer.WriteString(glue) } } return buffer.String() } // CountValues counts the number of occurrences of all values in the array. func (a *IntArray) CountValues() map[int]int { m := make(map[int]int) a.mu.RLock() defer a.mu.RUnlock() for _, v := range a.array { m[v]++ } return m } // Iterator is alias of IteratorAsc. func (a *IntArray) Iterator(f func(k int, v int) bool) { a.IteratorAsc(f) } // IteratorAsc iterates the array readonly in ascending order with given callback function `f`. // If `f` returns true, then it continues iterating; or false to stop. func (a *IntArray) IteratorAsc(f func(k int, v int) bool) { a.mu.RLock() defer a.mu.RUnlock() for k, v := range a.array { if !f(k, v) { break } } } // IteratorDesc iterates the array readonly in descending order with given callback function `f`. // If `f` returns true, then it continues iterating; or false to stop. func (a *IntArray) IteratorDesc(f func(k int, v int) bool) { a.mu.RLock() defer a.mu.RUnlock() for i := len(a.array) - 1; i >= 0; i-- { if !f(i, a.array[i]) { break } } } // String returns current array as a string, which implements like json.Marshal does. func (a *IntArray) String() string { if a == nil { return "" } return "[" + a.Join(",") + "]" } // MarshalJSON implements the interface MarshalJSON for json.Marshal. // Note that do not use pointer as its receiver here. func (a IntArray) MarshalJSON() ([]byte, error) { a.mu.RLock() defer a.mu.RUnlock() return json.Marshal(a.array) } // UnmarshalJSON implements the interface UnmarshalJSON for json.Unmarshal. func (a *IntArray) UnmarshalJSON(b []byte) error { if a.array == nil { a.array = make([]int, 0) } a.mu.Lock() defer a.mu.Unlock() if err := json.UnmarshalUseNumber(b, &a.array); err != nil { return err } return nil } // UnmarshalValue is an interface implement which sets any type of value for array. func (a *IntArray) UnmarshalValue(value interface{}) error { a.mu.Lock() defer a.mu.Unlock() switch value.(type) { case string, []byte: return json.UnmarshalUseNumber(gconv.Bytes(value), &a.array) default: a.array = gconv.SliceInt(value) } return nil } // Filter iterates array and filters elements using custom callback function. // It removes the element from array if callback function `filter` returns true, // it or else does nothing and continues iterating. func (a *IntArray) Filter(filter func(index int, value int) bool) *IntArray { a.mu.Lock() defer a.mu.Unlock() for i := 0; i < len(a.array); { if filter(i, a.array[i]) { a.array = append(a.array[:i], a.array[i+1:]...) } else { i++ } } return a } // FilterEmpty removes all zero value of the array. func (a *IntArray) FilterEmpty() *IntArray { a.mu.Lock() defer a.mu.Unlock() for i := 0; i < len(a.array); { if a.array[i] == 0 { a.array = append(a.array[:i], a.array[i+1:]...) } else { i++ } } return a } // Walk applies a user supplied function `f` to every item of array. func (a *IntArray) Walk(f func(value int) int) *IntArray { a.mu.Lock() defer a.mu.Unlock() for i, v := range a.array { a.array[i] = f(v) } return a } // IsEmpty checks whether the array is empty. func (a *IntArray) IsEmpty() bool { return a.Len() == 0 } // DeepCopy implements interface for deep copy of current type. func (a *IntArray) DeepCopy() interface{} { if a == nil { return nil } a.mu.RLock() defer a.mu.RUnlock() newSlice := make([]int, len(a.array)) copy(newSlice, a.array) return NewIntArrayFrom(newSlice, a.mu.IsSafe()) }