// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. //go:build !safe && !codec.safe && !appengine && go1.9 // +build !safe,!codec.safe,!appengine,go1.9 // minimum of go 1.9 is needed, as that is the minimum for all features and linked functions we need // - typedmemclr was introduced in go 1.8 // - mapassign_fastXXX was introduced in go 1.9 // etc package codec import ( "reflect" _ "runtime" // needed for go linkname(s) "sync/atomic" "time" "unsafe" ) // This file has unsafe variants of some helper functions. // MARKER: See helper_unsafe.go for the usage documentation. // There are a number of helper_*unsafe*.go files. // // - helper_unsafe // unsafe variants of dependent functions // - helper_unsafe_compiler_gc (gc) // unsafe variants of dependent functions which cannot be shared with gollvm or gccgo // - helper_not_unsafe_not_gc (gccgo/gollvm or safe) // safe variants of functions in helper_unsafe_compiler_gc // - helper_not_unsafe (safe) // safe variants of functions in helper_unsafe // - helper_unsafe_compiler_not_gc (gccgo, gollvm) // unsafe variants of functions/variables which non-standard compilers need // // This way, we can judiciously use build tags to include the right set of files // for any compiler, and make it run optimally in unsafe mode. // // As of March 2021, we cannot differentiate whether running with gccgo or gollvm // using a build constraint, as both satisfy 'gccgo' build tag. // Consequently, we must use the lowest common denominator to support both. // For reflect.Value code, we decided to do the following: // - if we know the kind, we can elide conditional checks for // - SetXXX (Int, Uint, String, Bool, etc) // - SetLen // // We can also optimize // - IsNil // MARKER: Some functions here will not be hit during code coverage runs due to optimizations, e.g. // - rvCopySlice: decode calls it if rvGrowSlice didn't set the new slice into the pointer to the orig slice. // however, helper_unsafe sets it, so there's no need to call rvCopySlice later // - rvSlice: same as above // - rvGetArray4Bytes: only called within kArray for []byte, but that is now handled // within the fast-path directly const safeMode = false // helperUnsafeDirectAssignMapEntry says that we should not copy the pointer in the map // to another value during mapRange/iteration and mapGet calls, but directly assign it. // // The only callers of mapRange/iteration is encode. // Here, we just walk through the values and encode them // // The only caller of mapGet is decode. // Here, it does a Get if the underlying value is a pointer, and decodes into that. // // For both users, we are very careful NOT to modify or keep the pointers around. // Consequently, it is ok for take advantage of the performance that the map is not modified // during an iteration and we can just "peek" at the internal value" in the map and use it. const helperUnsafeDirectAssignMapEntry = true // MARKER: keep in sync with GO_ROOT/src/reflect/value.go const ( unsafeFlagStickyRO = 1 << 5 unsafeFlagEmbedRO = 1 << 6 unsafeFlagIndir = 1 << 7 unsafeFlagAddr = 1 << 8 unsafeFlagRO = unsafeFlagStickyRO | unsafeFlagEmbedRO // unsafeFlagKindMask = (1 << 5) - 1 // 5 bits for 27 kinds (up to 31) // unsafeTypeKindDirectIface = 1 << 5 ) // transientSizeMax below is used in TransientAddr as the backing storage. // // Must be >= 16 as the maximum size is a complex128 (or string on 64-bit machines). const transientSizeMax = 64 // should struct/array support internal strings and slices? const transientValueHasStringSlice = false type unsafeString struct { Data unsafe.Pointer Len int } type unsafeSlice struct { Data unsafe.Pointer Len int Cap int } type unsafeIntf struct { typ unsafe.Pointer ptr unsafe.Pointer } type unsafeReflectValue struct { unsafeIntf flag uintptr } // keep in sync with stdlib runtime/type.go type unsafeRuntimeType struct { size uintptr // ... many other fields here } // unsafeZeroAddr and unsafeZeroSlice points to a read-only block of memory // used for setting a zero value for most types or creating a read-only // zero value for a given type. var ( unsafeZeroAddr = unsafe.Pointer(&unsafeZeroArr[0]) unsafeZeroSlice = unsafeSlice{unsafeZeroAddr, 0, 0} ) // We use a scratch memory and an unsafeSlice for transient values: // // unsafeSlice is used for standalone strings and slices (outside an array or struct). // scratch memory is used for other kinds, based on contract below: // - numbers, bool are always transient // - structs and arrays are transient iff they have no pointers i.e. // no string, slice, chan, func, interface, map, etc only numbers and bools. // - slices and strings are transient (using the unsafeSlice) type unsafePerTypeElem struct { arr [transientSizeMax]byte // for bool, number, struct, array kinds slice unsafeSlice // for string and slice kinds } func (x *unsafePerTypeElem) addrFor(k reflect.Kind) unsafe.Pointer { if k == reflect.String || k == reflect.Slice { x.slice = unsafeSlice{} // memclr return unsafe.Pointer(&x.slice) } x.arr = [transientSizeMax]byte{} // memclr return unsafe.Pointer(&x.arr) } type perType struct { elems [2]unsafePerTypeElem } type decPerType struct { perType } type encPerType struct{} // TransientAddrK is used for getting a *transient* value to be decoded into, // which will right away be used for something else. // // See notes in helper.go about "Transient values during decoding" func (x *perType) TransientAddrK(t reflect.Type, k reflect.Kind) reflect.Value { return rvZeroAddrTransientAnyK(t, k, x.elems[0].addrFor(k)) } func (x *perType) TransientAddr2K(t reflect.Type, k reflect.Kind) reflect.Value { return rvZeroAddrTransientAnyK(t, k, x.elems[1].addrFor(k)) } func (encPerType) AddressableRO(v reflect.Value) reflect.Value { return rvAddressableReadonly(v) } // stringView returns a view of the []byte as a string. // In unsafe mode, it doesn't incur allocation and copying caused by conversion. // In regular safe mode, it is an allocation and copy. func stringView(v []byte) string { return *(*string)(unsafe.Pointer(&v)) } // bytesView returns a view of the string as a []byte. // In unsafe mode, it doesn't incur allocation and copying caused by conversion. // In regular safe mode, it is an allocation and copy. func bytesView(v string) (b []byte) { sx := (*unsafeString)(unsafe.Pointer(&v)) bx := (*unsafeSlice)(unsafe.Pointer(&b)) bx.Data, bx.Len, bx.Cap = sx.Data, sx.Len, sx.Len return } func byteSliceSameData(v1 []byte, v2 []byte) bool { return (*unsafeSlice)(unsafe.Pointer(&v1)).Data == (*unsafeSlice)(unsafe.Pointer(&v2)).Data } // MARKER: okBytesN functions will copy N bytes into the top slots of the return array. // These functions expect that the bounds are valid, and have been checked before this is called. // copy(...) does a number of checks which are unnecessary in this situation when in bounds. func okBytes3(b []byte) (v [4]byte) { *(*[3]byte)(unsafe.Pointer(&v[1])) = *((*[3]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data)) return } func okBytes4(b []byte) [4]byte { return *((*[4]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data)) } func okBytes8(b []byte) [8]byte { return *((*[8]byte)(((*unsafeSlice)(unsafe.Pointer(&b))).Data)) } // isNil says whether the value v is nil. // This applies to references like map/ptr/unsafepointer/chan/func, // and non-reference values like interface/slice. func isNil(v interface{}) (rv reflect.Value, isnil bool) { var ui = (*unsafeIntf)(unsafe.Pointer(&v)) isnil = ui.ptr == nil if !isnil { rv, isnil = unsafeIsNilIntfOrSlice(ui, v) } return } func unsafeIsNilIntfOrSlice(ui *unsafeIntf, v interface{}) (rv reflect.Value, isnil bool) { rv = reflect.ValueOf(v) // reflect.ValueOf is currently not inline'able - so call it directly tk := rv.Kind() isnil = (tk == reflect.Interface || tk == reflect.Slice) && *(*unsafe.Pointer)(ui.ptr) == nil return } // return the pointer for a reference (map/chan/func/pointer/unsafe.Pointer). // true references (map, func, chan, ptr - NOT slice) may be double-referenced? as flagIndir // // Assumes that v is a reference (map/func/chan/ptr/func) func rvRefPtr(v *unsafeReflectValue) unsafe.Pointer { if v.flag&unsafeFlagIndir != 0 { return *(*unsafe.Pointer)(v.ptr) } return v.ptr } func eq4i(i0, i1 interface{}) bool { v0 := (*unsafeIntf)(unsafe.Pointer(&i0)) v1 := (*unsafeIntf)(unsafe.Pointer(&i1)) return v0.typ == v1.typ && v0.ptr == v1.ptr } func rv4iptr(i interface{}) (v reflect.Value) { // Main advantage here is that it is inlined, nothing escapes to heap, i is never nil uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) uv.unsafeIntf = *(*unsafeIntf)(unsafe.Pointer(&i)) uv.flag = uintptr(rkindPtr) return } func rv4istr(i interface{}) (v reflect.Value) { // Main advantage here is that it is inlined, nothing escapes to heap, i is never nil uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) uv.unsafeIntf = *(*unsafeIntf)(unsafe.Pointer(&i)) uv.flag = uintptr(rkindString) | unsafeFlagIndir return } func rv2i(rv reflect.Value) (i interface{}) { // We tap into implememtation details from // the source go stdlib reflect/value.go, and trims the implementation. // // e.g. // - a map/ptr is a reference, thus flagIndir is not set on it // - an int/slice is not a reference, thus flagIndir is set on it urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) if refBitset.isset(byte(rv.Kind())) && urv.flag&unsafeFlagIndir != 0 { urv.ptr = *(*unsafe.Pointer)(urv.ptr) } return *(*interface{})(unsafe.Pointer(&urv.unsafeIntf)) } func rvAddr(rv reflect.Value, ptrType reflect.Type) reflect.Value { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) urv.flag = (urv.flag & unsafeFlagRO) | uintptr(reflect.Ptr) urv.typ = ((*unsafeIntf)(unsafe.Pointer(&ptrType))).ptr return rv } func rvIsNil(rv reflect.Value) bool { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) if urv.flag&unsafeFlagIndir != 0 { return *(*unsafe.Pointer)(urv.ptr) == nil } return urv.ptr == nil } func rvSetSliceLen(rv reflect.Value, length int) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) (*unsafeString)(urv.ptr).Len = length } func rvZeroAddrK(t reflect.Type, k reflect.Kind) (rv reflect.Value) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr urv.ptr = unsafeNew(urv.typ) return } func rvZeroAddrTransientAnyK(t reflect.Type, k reflect.Kind, addr unsafe.Pointer) (rv reflect.Value) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr urv.ptr = addr return } func rvZeroK(t reflect.Type, k reflect.Kind) (rv reflect.Value) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr if refBitset.isset(byte(k)) { urv.flag = uintptr(k) } else if rtsize2(urv.typ) <= uintptr(len(unsafeZeroArr)) { urv.flag = uintptr(k) | unsafeFlagIndir urv.ptr = unsafeZeroAddr } else { // meaning struct or array urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr urv.ptr = unsafeNew(urv.typ) } return } // rvConvert will convert a value to a different type directly, // ensuring that they still point to the same underlying value. func rvConvert(v reflect.Value, t reflect.Type) reflect.Value { uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) uv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr return v } // rvAddressableReadonly returns an addressable reflect.Value. // // Use it within encode calls, when you just want to "read" the underlying ptr // without modifying the value. // // Note that it cannot be used for r/w use, as those non-addressable values // may have been stored in read-only memory, and trying to write the pointer // may cause a segfault. func rvAddressableReadonly(v reflect.Value) reflect.Value { // hack to make an addressable value out of a non-addressable one. // Assume folks calling it are passing a value that can be addressable, but isn't. // This assumes that the flagIndir is already set on it. // so we just set the flagAddr bit on the flag (and do not set the flagIndir). uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) uv.flag = uv.flag | unsafeFlagAddr // | unsafeFlagIndir return v } func rtsize2(rt unsafe.Pointer) uintptr { return ((*unsafeRuntimeType)(rt)).size } func rt2id(rt reflect.Type) uintptr { return uintptr(((*unsafeIntf)(unsafe.Pointer(&rt))).ptr) } func i2rtid(i interface{}) uintptr { return uintptr(((*unsafeIntf)(unsafe.Pointer(&i))).typ) } // -------------------------- func unsafeCmpZero(ptr unsafe.Pointer, size int) bool { // verified that size is always within right range, so no chance of OOM var s1 = unsafeString{ptr, size} var s2 = unsafeString{unsafeZeroAddr, size} if size > len(unsafeZeroArr) { arr := make([]byte, size) s2.Data = unsafe.Pointer(&arr[0]) } return *(*string)(unsafe.Pointer(&s1)) == *(*string)(unsafe.Pointer(&s2)) // memcmp } func isEmptyValue(v reflect.Value, tinfos *TypeInfos, recursive bool) bool { urv := (*unsafeReflectValue)(unsafe.Pointer(&v)) if urv.flag == 0 { return true } if recursive { return isEmptyValueFallbackRecur(urv, v, tinfos) } return unsafeCmpZero(urv.ptr, int(rtsize2(urv.typ))) } func isEmptyValueFallbackRecur(urv *unsafeReflectValue, v reflect.Value, tinfos *TypeInfos) bool { const recursive = true switch v.Kind() { case reflect.Invalid: return true case reflect.String: return (*unsafeString)(urv.ptr).Len == 0 case reflect.Slice: return (*unsafeSlice)(urv.ptr).Len == 0 case reflect.Bool: return !*(*bool)(urv.ptr) case reflect.Int: return *(*int)(urv.ptr) == 0 case reflect.Int8: return *(*int8)(urv.ptr) == 0 case reflect.Int16: return *(*int16)(urv.ptr) == 0 case reflect.Int32: return *(*int32)(urv.ptr) == 0 case reflect.Int64: return *(*int64)(urv.ptr) == 0 case reflect.Uint: return *(*uint)(urv.ptr) == 0 case reflect.Uint8: return *(*uint8)(urv.ptr) == 0 case reflect.Uint16: return *(*uint16)(urv.ptr) == 0 case reflect.Uint32: return *(*uint32)(urv.ptr) == 0 case reflect.Uint64: return *(*uint64)(urv.ptr) == 0 case reflect.Uintptr: return *(*uintptr)(urv.ptr) == 0 case reflect.Float32: return *(*float32)(urv.ptr) == 0 case reflect.Float64: return *(*float64)(urv.ptr) == 0 case reflect.Complex64: return unsafeCmpZero(urv.ptr, 8) case reflect.Complex128: return unsafeCmpZero(urv.ptr, 16) case reflect.Struct: // return isEmptyStruct(v, tinfos, recursive) if tinfos == nil { tinfos = defTypeInfos } ti := tinfos.find(uintptr(urv.typ)) if ti == nil { ti = tinfos.load(rvType(v)) } return unsafeCmpZero(urv.ptr, int(ti.size)) case reflect.Interface, reflect.Ptr: // isnil := urv.ptr == nil // (not sufficient, as a pointer value encodes the type) isnil := urv.ptr == nil || *(*unsafe.Pointer)(urv.ptr) == nil if recursive && !isnil { return isEmptyValue(v.Elem(), tinfos, recursive) } return isnil case reflect.UnsafePointer: return urv.ptr == nil || *(*unsafe.Pointer)(urv.ptr) == nil case reflect.Chan: return urv.ptr == nil || len_chan(rvRefPtr(urv)) == 0 case reflect.Map: return urv.ptr == nil || len_map(rvRefPtr(urv)) == 0 case reflect.Array: return v.Len() == 0 } return false } // -------------------------- type structFieldInfos struct { c unsafe.Pointer // source s unsafe.Pointer // sorted length int } func (x *structFieldInfos) load(source, sorted []*structFieldInfo) { s := (*unsafeSlice)(unsafe.Pointer(&sorted)) x.s = s.Data x.length = s.Len s = (*unsafeSlice)(unsafe.Pointer(&source)) x.c = s.Data } func (x *structFieldInfos) sorted() (v []*structFieldInfo) { *(*unsafeSlice)(unsafe.Pointer(&v)) = unsafeSlice{x.s, x.length, x.length} // s := (*unsafeSlice)(unsafe.Pointer(&v)) // s.Data = x.sorted0 // s.Len = x.length // s.Cap = s.Len return } func (x *structFieldInfos) source() (v []*structFieldInfo) { *(*unsafeSlice)(unsafe.Pointer(&v)) = unsafeSlice{x.c, x.length, x.length} return } // atomicXXX is expected to be 2 words (for symmetry with atomic.Value) // // Note that we do not atomically load/store length and data pointer separately, // as this could lead to some races. Instead, we atomically load/store cappedSlice. // // Note: with atomic.(Load|Store)Pointer, we MUST work with an unsafe.Pointer directly. // ---------------------- type atomicTypeInfoSlice struct { v unsafe.Pointer // *[]rtid2ti } func (x *atomicTypeInfoSlice) load() (s []rtid2ti) { x2 := atomic.LoadPointer(&x.v) if x2 != nil { s = *(*[]rtid2ti)(x2) } return } func (x *atomicTypeInfoSlice) store(p []rtid2ti) { atomic.StorePointer(&x.v, unsafe.Pointer(&p)) } // MARKER: in safe mode, atomicXXX are atomic.Value, which contains an interface{}. // This is 2 words. // consider padding atomicXXX here with a uintptr, so they fit into 2 words also. // -------------------------- type atomicRtidFnSlice struct { v unsafe.Pointer // *[]codecRtidFn } func (x *atomicRtidFnSlice) load() (s []codecRtidFn) { x2 := atomic.LoadPointer(&x.v) if x2 != nil { s = *(*[]codecRtidFn)(x2) } return } func (x *atomicRtidFnSlice) store(p []codecRtidFn) { atomic.StorePointer(&x.v, unsafe.Pointer(&p)) } // -------------------------- type atomicClsErr struct { v unsafe.Pointer // *clsErr } func (x *atomicClsErr) load() (e clsErr) { x2 := (*clsErr)(atomic.LoadPointer(&x.v)) if x2 != nil { e = *x2 } return } func (x *atomicClsErr) store(p clsErr) { atomic.StorePointer(&x.v, unsafe.Pointer(&p)) } // -------------------------- // to create a reflect.Value for each member field of fauxUnion, // we first create a global fauxUnion, and create reflect.Value // for them all. // This way, we have the flags and type in the reflect.Value. // Then, when a reflect.Value is called, we just copy it, // update the ptr to the fauxUnion's, and return it. type unsafeDecNakedWrapper struct { fauxUnion ru, ri, rf, rl, rs, rb, rt reflect.Value // mapping to the primitives above } func (n *unsafeDecNakedWrapper) init() { n.ru = rv4iptr(&n.u).Elem() n.ri = rv4iptr(&n.i).Elem() n.rf = rv4iptr(&n.f).Elem() n.rl = rv4iptr(&n.l).Elem() n.rs = rv4iptr(&n.s).Elem() n.rt = rv4iptr(&n.t).Elem() n.rb = rv4iptr(&n.b).Elem() // n.rr[] = reflect.ValueOf(&n.) } var defUnsafeDecNakedWrapper unsafeDecNakedWrapper func init() { defUnsafeDecNakedWrapper.init() } func (n *fauxUnion) ru() (v reflect.Value) { v = defUnsafeDecNakedWrapper.ru ((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.u) return } func (n *fauxUnion) ri() (v reflect.Value) { v = defUnsafeDecNakedWrapper.ri ((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.i) return } func (n *fauxUnion) rf() (v reflect.Value) { v = defUnsafeDecNakedWrapper.rf ((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.f) return } func (n *fauxUnion) rl() (v reflect.Value) { v = defUnsafeDecNakedWrapper.rl ((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.l) return } func (n *fauxUnion) rs() (v reflect.Value) { v = defUnsafeDecNakedWrapper.rs ((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.s) return } func (n *fauxUnion) rt() (v reflect.Value) { v = defUnsafeDecNakedWrapper.rt ((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.t) return } func (n *fauxUnion) rb() (v reflect.Value) { v = defUnsafeDecNakedWrapper.rb ((*unsafeReflectValue)(unsafe.Pointer(&v))).ptr = unsafe.Pointer(&n.b) return } // -------------------------- func rvSetBytes(rv reflect.Value, v []byte) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*[]byte)(urv.ptr) = v } func rvSetString(rv reflect.Value, v string) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*string)(urv.ptr) = v } func rvSetBool(rv reflect.Value, v bool) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*bool)(urv.ptr) = v } func rvSetTime(rv reflect.Value, v time.Time) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*time.Time)(urv.ptr) = v } func rvSetFloat32(rv reflect.Value, v float32) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*float32)(urv.ptr) = v } func rvSetFloat64(rv reflect.Value, v float64) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*float64)(urv.ptr) = v } func rvSetComplex64(rv reflect.Value, v complex64) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*complex64)(urv.ptr) = v } func rvSetComplex128(rv reflect.Value, v complex128) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*complex128)(urv.ptr) = v } func rvSetInt(rv reflect.Value, v int) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*int)(urv.ptr) = v } func rvSetInt8(rv reflect.Value, v int8) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*int8)(urv.ptr) = v } func rvSetInt16(rv reflect.Value, v int16) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*int16)(urv.ptr) = v } func rvSetInt32(rv reflect.Value, v int32) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*int32)(urv.ptr) = v } func rvSetInt64(rv reflect.Value, v int64) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*int64)(urv.ptr) = v } func rvSetUint(rv reflect.Value, v uint) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*uint)(urv.ptr) = v } func rvSetUintptr(rv reflect.Value, v uintptr) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*uintptr)(urv.ptr) = v } func rvSetUint8(rv reflect.Value, v uint8) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*uint8)(urv.ptr) = v } func rvSetUint16(rv reflect.Value, v uint16) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*uint16)(urv.ptr) = v } func rvSetUint32(rv reflect.Value, v uint32) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*uint32)(urv.ptr) = v } func rvSetUint64(rv reflect.Value, v uint64) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) *(*uint64)(urv.ptr) = v } // ---------------- // rvSetZero is rv.Set(reflect.Zero(rv.Type()) for all kinds (including reflect.Interface). func rvSetZero(rv reflect.Value) { rvSetDirectZero(rv) } func rvSetIntf(rv reflect.Value, v reflect.Value) { rv.Set(v) } // rvSetDirect is rv.Set for all kinds except reflect.Interface. // // Callers MUST not pass a value of kind reflect.Interface, as it may cause unexpected segfaults. func rvSetDirect(rv reflect.Value, v reflect.Value) { // MARKER: rv.Set for kind reflect.Interface may do a separate allocation if a scalar value. // The book-keeping is onerous, so we just do the simple ones where a memmove is sufficient. urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) if uv.flag&unsafeFlagIndir == 0 { *(*unsafe.Pointer)(urv.ptr) = uv.ptr } else if uv.ptr == unsafeZeroAddr { if urv.ptr != unsafeZeroAddr { typedmemclr(urv.typ, urv.ptr) } } else { typedmemmove(urv.typ, urv.ptr, uv.ptr) } } // rvSetDirectZero is rv.Set(reflect.Zero(rv.Type()) for all kinds except reflect.Interface. func rvSetDirectZero(rv reflect.Value) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) if urv.ptr != unsafeZeroAddr { typedmemclr(urv.typ, urv.ptr) } } // rvMakeSlice updates the slice to point to a new array. // It copies data from old slice to new slice. // It returns set=true iff it updates it, else it just returns a new slice pointing to a newly made array. func rvMakeSlice(rv reflect.Value, ti *typeInfo, xlen, xcap int) (_ reflect.Value, set bool) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) ux := (*unsafeSlice)(urv.ptr) t := ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr s := unsafeSlice{newarray(t, xcap), xlen, xcap} if ux.Len > 0 { typedslicecopy(t, s, *ux) } *ux = s return rv, true } // rvSlice returns a sub-slice of the slice given new lenth, // without modifying passed in value. // It is typically called when we know that SetLen(...) cannot be done. func rvSlice(rv reflect.Value, length int) reflect.Value { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) var x []struct{} ux := (*unsafeSlice)(unsafe.Pointer(&x)) *ux = *(*unsafeSlice)(urv.ptr) ux.Len = length urv.ptr = unsafe.Pointer(ux) return rv } // rcGrowSlice updates the slice to point to a new array with the cap incremented, and len set to the new cap value. // It copies data from old slice to new slice. // It returns set=true iff it updates it, else it just returns a new slice pointing to a newly made array. func rvGrowSlice(rv reflect.Value, ti *typeInfo, cap, incr int) (v reflect.Value, newcap int, set bool) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) ux := (*unsafeSlice)(urv.ptr) t := ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr *ux = unsafeGrowslice(t, *ux, cap, incr) ux.Len = ux.Cap return rv, ux.Cap, true } // ------------ func rvSliceIndex(rv reflect.Value, i int, ti *typeInfo) (v reflect.Value) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) uv.ptr = unsafe.Pointer(uintptr(((*unsafeSlice)(urv.ptr)).Data) + uintptr(int(ti.elemsize)*i)) uv.typ = ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr uv.flag = uintptr(ti.elemkind) | unsafeFlagIndir | unsafeFlagAddr return } func rvSliceZeroCap(t reflect.Type) (v reflect.Value) { urv := (*unsafeReflectValue)(unsafe.Pointer(&v)) urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr urv.flag = uintptr(reflect.Slice) | unsafeFlagIndir urv.ptr = unsafe.Pointer(&unsafeZeroSlice) return } func rvLenSlice(rv reflect.Value) int { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return (*unsafeSlice)(urv.ptr).Len } func rvCapSlice(rv reflect.Value) int { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return (*unsafeSlice)(urv.ptr).Cap } func rvArrayIndex(rv reflect.Value, i int, ti *typeInfo) (v reflect.Value) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) uv.ptr = unsafe.Pointer(uintptr(urv.ptr) + uintptr(int(ti.elemsize)*i)) uv.typ = ((*unsafeIntf)(unsafe.Pointer(&ti.elem))).ptr uv.flag = uintptr(ti.elemkind) | unsafeFlagIndir | unsafeFlagAddr return } // if scratch is nil, then return a writable view (assuming canAddr=true) func rvGetArrayBytes(rv reflect.Value, scratch []byte) (bs []byte) { urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) bx := (*unsafeSlice)(unsafe.Pointer(&bs)) bx.Data = urv.ptr bx.Len = rv.Len() bx.Cap = bx.Len return } func rvGetArray4Slice(rv reflect.Value) (v reflect.Value) { // It is possible that this slice is based off an array with a larger // len that we want (where array len == slice cap). // However, it is ok to create an array type that is a subset of the full // e.g. full slice is based off a *[16]byte, but we can create a *[4]byte // off of it. That is ok. // // Consequently, we use rvLenSlice, not rvCapSlice. t := reflectArrayOf(rvLenSlice(rv), rvType(rv).Elem()) // v = rvZeroAddrK(t, reflect.Array) uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) uv.flag = uintptr(reflect.Array) | unsafeFlagIndir | unsafeFlagAddr uv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) uv.ptr = *(*unsafe.Pointer)(urv.ptr) // slice rv has a ptr to the slice. return } func rvGetSlice4Array(rv reflect.Value, v interface{}) { // v is a pointer to a slice to be populated uv := (*unsafeIntf)(unsafe.Pointer(&v)) urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) s := (*unsafeSlice)(uv.ptr) s.Data = urv.ptr s.Len = rv.Len() s.Cap = s.Len } func rvCopySlice(dest, src reflect.Value, elemType reflect.Type) { typedslicecopy((*unsafeIntf)(unsafe.Pointer(&elemType)).ptr, *(*unsafeSlice)((*unsafeReflectValue)(unsafe.Pointer(&dest)).ptr), *(*unsafeSlice)((*unsafeReflectValue)(unsafe.Pointer(&src)).ptr)) } // ------------ func rvGetBool(rv reflect.Value) bool { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*bool)(v.ptr) } func rvGetBytes(rv reflect.Value) []byte { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*[]byte)(v.ptr) } func rvGetTime(rv reflect.Value) time.Time { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*time.Time)(v.ptr) } func rvGetString(rv reflect.Value) string { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*string)(v.ptr) } func rvGetFloat64(rv reflect.Value) float64 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*float64)(v.ptr) } func rvGetFloat32(rv reflect.Value) float32 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*float32)(v.ptr) } func rvGetComplex64(rv reflect.Value) complex64 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*complex64)(v.ptr) } func rvGetComplex128(rv reflect.Value) complex128 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*complex128)(v.ptr) } func rvGetInt(rv reflect.Value) int { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*int)(v.ptr) } func rvGetInt8(rv reflect.Value) int8 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*int8)(v.ptr) } func rvGetInt16(rv reflect.Value) int16 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*int16)(v.ptr) } func rvGetInt32(rv reflect.Value) int32 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*int32)(v.ptr) } func rvGetInt64(rv reflect.Value) int64 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*int64)(v.ptr) } func rvGetUint(rv reflect.Value) uint { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*uint)(v.ptr) } func rvGetUint8(rv reflect.Value) uint8 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*uint8)(v.ptr) } func rvGetUint16(rv reflect.Value) uint16 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*uint16)(v.ptr) } func rvGetUint32(rv reflect.Value) uint32 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*uint32)(v.ptr) } func rvGetUint64(rv reflect.Value) uint64 { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*uint64)(v.ptr) } func rvGetUintptr(rv reflect.Value) uintptr { v := (*unsafeReflectValue)(unsafe.Pointer(&rv)) return *(*uintptr)(v.ptr) } func rvLenMap(rv reflect.Value) int { // maplen is not inlined, because as of go1.16beta, go:linkname's are not inlined. // thus, faster to call rv.Len() directly. // // MARKER: review after https://github.com/golang/go/issues/20019 fixed. // return rv.Len() return len_map(rvRefPtr((*unsafeReflectValue)(unsafe.Pointer(&rv)))) } // Note: it is hard to find len(...) of an array type, // as that is a field in the arrayType representing the array, and hard to introspect. // // func rvLenArray(rv reflect.Value) int { return rv.Len() } // ------------ map range and map indexing ---------- // regular calls to map via reflection: MapKeys, MapIndex, MapRange/MapIter etc // will always allocate for each map key or value. // // It is more performant to provide a value that the map entry is set into, // and that elides the allocation. // go 1.4+ has runtime/hashmap.go or runtime/map.go which has a // hIter struct with the first 2 values being key and value // of the current iteration. // // This *hIter is passed to mapiterinit, mapiternext, mapiterkey, mapiterelem. // We bypass the reflect wrapper functions and just use the *hIter directly. // // Though *hIter has many fields, we only care about the first 2. // // We directly embed this in unsafeMapIter below // // hiter is typically about 12 words, but we just fill up unsafeMapIter to 32 words, // so it fills multiple cache lines and can give some extra space to accomodate small growth. type unsafeMapIter struct { mtyp, mptr unsafe.Pointer k, v reflect.Value kisref bool visref bool mapvalues bool done bool started bool _ [3]byte // padding it struct { key unsafe.Pointer value unsafe.Pointer _ [20]uintptr // padding for other fields (to make up 32 words for enclosing struct) } } func (t *unsafeMapIter) Next() (r bool) { if t == nil || t.done { return } if t.started { mapiternext((unsafe.Pointer)(&t.it)) } else { t.started = true } t.done = t.it.key == nil if t.done { return } if helperUnsafeDirectAssignMapEntry || t.kisref { (*unsafeReflectValue)(unsafe.Pointer(&t.k)).ptr = t.it.key } else { k := (*unsafeReflectValue)(unsafe.Pointer(&t.k)) typedmemmove(k.typ, k.ptr, t.it.key) } if t.mapvalues { if helperUnsafeDirectAssignMapEntry || t.visref { (*unsafeReflectValue)(unsafe.Pointer(&t.v)).ptr = t.it.value } else { v := (*unsafeReflectValue)(unsafe.Pointer(&t.v)) typedmemmove(v.typ, v.ptr, t.it.value) } } return true } func (t *unsafeMapIter) Key() (r reflect.Value) { return t.k } func (t *unsafeMapIter) Value() (r reflect.Value) { return t.v } func (t *unsafeMapIter) Done() {} type mapIter struct { unsafeMapIter } func mapRange(t *mapIter, m, k, v reflect.Value, mapvalues bool) { if rvIsNil(m) { t.done = true return } t.done = false t.started = false t.mapvalues = mapvalues // var urv *unsafeReflectValue urv := (*unsafeReflectValue)(unsafe.Pointer(&m)) t.mtyp = urv.typ t.mptr = rvRefPtr(urv) // t.it = (*unsafeMapHashIter)(reflect_mapiterinit(t.mtyp, t.mptr)) mapiterinit(t.mtyp, t.mptr, unsafe.Pointer(&t.it)) t.k = k t.kisref = refBitset.isset(byte(k.Kind())) if mapvalues { t.v = v t.visref = refBitset.isset(byte(v.Kind())) } else { t.v = reflect.Value{} } } // unsafeMapKVPtr returns the pointer if flagIndir, else it returns a pointer to the pointer. // It is needed as maps always keep a reference to the underlying value. func unsafeMapKVPtr(urv *unsafeReflectValue) unsafe.Pointer { if urv.flag&unsafeFlagIndir == 0 { return unsafe.Pointer(&urv.ptr) } return urv.ptr } // func mapDelete(m, k reflect.Value) { // var urv = (*unsafeReflectValue)(unsafe.Pointer(&k)) // var kptr = unsafeMapKVPtr(urv) // urv = (*unsafeReflectValue)(unsafe.Pointer(&m)) // mapdelete(urv.typ, rv2ptr(urv), kptr) // } // return an addressable reflect value that can be used in mapRange and mapGet operations. // // all calls to mapGet or mapRange will call here to get an addressable reflect.Value. func mapAddrLoopvarRV(t reflect.Type, k reflect.Kind) (rv reflect.Value) { // return rvZeroAddrK(t, k) urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) urv.flag = uintptr(k) | unsafeFlagIndir | unsafeFlagAddr urv.typ = ((*unsafeIntf)(unsafe.Pointer(&t))).ptr // since we always set the ptr when helperUnsafeDirectAssignMapEntry=true, // we should only allocate if it is not true if !helperUnsafeDirectAssignMapEntry { urv.ptr = unsafeNew(urv.typ) } return } // ---------- ENCODER optimized --------------- func (e *Encoder) jsondriver() *jsonEncDriver { return (*jsonEncDriver)((*unsafeIntf)(unsafe.Pointer(&e.e)).ptr) } func (d *Decoder) zerocopystate() bool { return d.decByteState == decByteStateZerocopy && d.h.ZeroCopy } func (d *Decoder) stringZC(v []byte) (s string) { if d.zerocopystate() { return stringView(v) } return d.string(v) } func (d *Decoder) mapKeyString(callFnRvk *bool, kstrbs, kstr2bs *[]byte) string { if !d.zerocopystate() { *callFnRvk = true if d.decByteState == decByteStateReuseBuf { *kstrbs = append((*kstrbs)[:0], (*kstr2bs)...) *kstr2bs = *kstrbs } } return stringView(*kstr2bs) } // ---------- DECODER optimized --------------- func (d *Decoder) checkBreak() bool { // MARKER: jsonDecDriver.CheckBreak() costs over 80, and this isn't inlined. // Consequently, there's no benefit in incurring the cost of this // wrapping function checkBreak. // // It is faster to just call the interface method directly. // if d.js { // return d.jsondriver().CheckBreak() // } // if d.cbor { // return d.cbordriver().CheckBreak() // } return d.d.CheckBreak() } func (d *Decoder) jsondriver() *jsonDecDriver { return (*jsonDecDriver)((*unsafeIntf)(unsafe.Pointer(&d.d)).ptr) } // ---------- structFieldInfo optimized --------------- func (n *structFieldInfoPathNode) rvField(v reflect.Value) (rv reflect.Value) { // we already know this is exported, and maybe embedded (based on what si says) uv := (*unsafeReflectValue)(unsafe.Pointer(&v)) urv := (*unsafeReflectValue)(unsafe.Pointer(&rv)) // clear flagEmbedRO if necessary, and inherit permission bits from v urv.flag = uv.flag&(unsafeFlagStickyRO|unsafeFlagIndir|unsafeFlagAddr) | uintptr(n.kind) urv.typ = ((*unsafeIntf)(unsafe.Pointer(&n.typ))).ptr urv.ptr = unsafe.Pointer(uintptr(uv.ptr) + uintptr(n.offset)) return } // runtime chan and map are designed such that the first field is the count. // len builtin uses this to get the length of a chan/map easily. // leverage this knowledge, since maplen and chanlen functions from runtime package // are go:linkname'd here, and thus not inlined as of go1.16beta func len_map_chan(m unsafe.Pointer) int { if m == nil { return 0 } return *((*int)(m)) } func len_map(m unsafe.Pointer) int { // return maplen(m) return len_map_chan(m) } func len_chan(m unsafe.Pointer) int { // return chanlen(m) return len_map_chan(m) } func unsafeNew(typ unsafe.Pointer) unsafe.Pointer { return mallocgc(rtsize2(typ), typ, true) } // ---------- go linknames (LINKED to runtime/reflect) --------------- // MARKER: always check that these linknames match subsequent versions of go // // Note that as of Jan 2021 (go 1.16 release), go:linkname(s) are not inlined // outside of the standard library use (e.g. within sync, reflect, etc). // If these link'ed functions were normally inlined, calling them here would // not necessarily give a performance boost, due to function overhead. // // However, it seems most of these functions are not inlined anyway, // as only maplen, chanlen and mapaccess are small enough to get inlined. // // We checked this by going into $GOROOT/src/runtime and running: // $ go build -tags codec.notfastpath -gcflags "-m=2" // reflect.{unsafe_New, unsafe_NewArray} are not supported in gollvm, // failing with "error: undefined reference" error. // however, runtime.{mallocgc, newarray} are supported, so use that instead. //go:linkname mallocgc runtime.mallocgc //go:noescape func mallocgc(size uintptr, typ unsafe.Pointer, needzero bool) unsafe.Pointer //go:linkname newarray runtime.newarray //go:noescape func newarray(typ unsafe.Pointer, n int) unsafe.Pointer //go:linkname mapiterinit runtime.mapiterinit //go:noescape func mapiterinit(typ unsafe.Pointer, m unsafe.Pointer, it unsafe.Pointer) //go:linkname mapiternext runtime.mapiternext //go:noescape func mapiternext(it unsafe.Pointer) (key unsafe.Pointer) //go:linkname mapdelete runtime.mapdelete //go:noescape func mapdelete(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer) //go:linkname mapassign runtime.mapassign //go:noescape func mapassign(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer) unsafe.Pointer //go:linkname mapaccess2 runtime.mapaccess2 //go:noescape func mapaccess2(typ unsafe.Pointer, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer, ok bool) // reflect.typed{memmove, memclr, slicecopy} will handle checking if the type has pointers or not, // and if a writeBarrier is needed, before delegating to the right method in the runtime. // // This is why we use the functions in reflect, and not the ones in runtime directly. // Calling runtime.XXX here will lead to memory issues. //go:linkname typedslicecopy reflect.typedslicecopy //go:noescape func typedslicecopy(elemType unsafe.Pointer, dst, src unsafeSlice) int //go:linkname typedmemmove reflect.typedmemmove //go:noescape func typedmemmove(typ unsafe.Pointer, dst, src unsafe.Pointer) //go:linkname typedmemclr reflect.typedmemclr //go:noescape func typedmemclr(typ unsafe.Pointer, dst unsafe.Pointer)