master
李光春 2 years ago
parent 5154d98a88
commit 41eb0ee8e0

@ -3,11 +3,14 @@ module github.com/dtapps/gomongo
go 1.18
require (
github.com/basgys/goxml2json v1.1.0
github.com/beevik/etree v1.1.0
github.com/dtapps/gotime v1.0.1
go.mongodb.org/mongo-driver v1.9.0
)
require (
github.com/bitly/go-simplejson v0.5.0 // indirect
github.com/go-stack/stack v1.8.1 // indirect
github.com/golang/snappy v0.0.4 // indirect
github.com/klauspost/compress v1.15.2 // indirect
@ -17,6 +20,7 @@ require (
github.com/xdg-go/stringprep v1.0.3 // indirect
github.com/youmark/pkcs8 v0.0.0-20201027041543-1326539a0a0a // indirect
golang.org/x/crypto v0.0.0-20220427172511-eb4f295cb31f // indirect
golang.org/x/net v0.0.0-20220425223048-2871e0cb64e4 // indirect
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c // indirect
golang.org/x/text v0.3.7 // indirect
)

@ -1,3 +1,9 @@
github.com/basgys/goxml2json v1.1.0 h1:4ln5i4rseYfXNd86lGEB+Vi652IsIXIvggKM/BhUKVw=
github.com/basgys/goxml2json v1.1.0/go.mod h1:wH7a5Np/Q4QoECFIU8zTQlZwZkrilY0itPfecMw41Dw=
github.com/beevik/etree v1.1.0 h1:T0xke/WvNtMoCqgzPhkX2r4rjY3GDZFi+FjpRZY2Jbs=
github.com/beevik/etree v1.1.0/go.mod h1:r8Aw8JqVegEf0w2fDnATrX9VpkMcyFeM0FhwO62wh+A=
github.com/bitly/go-simplejson v0.5.0 h1:6IH+V8/tVMab511d5bn4M7EwGXZf9Hj6i2xSwkNEM+Y=
github.com/bitly/go-simplejson v0.5.0/go.mod h1:cXHtHw4XUPsvGaxgjIAn8PhEWG9NfngEKAMDJEczWVA=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
@ -47,6 +53,8 @@ golang.org/x/crypto v0.0.0-20220427172511-eb4f295cb31f h1:OeJjE6G4dgCY4PIXvIRQbE
golang.org/x/crypto v0.0.0-20220427172511-eb4f295cb31f/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
golang.org/x/net v0.0.0-20190311183353-d8887717615a/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20220425223048-2871e0cb64e4 h1:HVyaeDAYux4pnY+D/SiwmLOR36ewZ4iGQIIrtnuCjFA=
golang.org/x/net v0.0.0-20220425223048-2871e0cb64e4/go.mod h1:CfG3xpIq0wQ8r1q4Su4UZFWDARRcnwPjda9FqA0JpMk=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c h1:5KslGYwFpkhGh+Q16bwMP3cOontH8FOep7tGV86Y7SQ=

@ -0,0 +1,25 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof
/.tags

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2016 Bastien Gysler
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

@ -0,0 +1,82 @@
# goxml2json [![CircleCI](https://circleci.com/gh/basgys/goxml2json.svg?style=svg)](https://circleci.com/gh/basgys/goxml2json)
Go package that converts XML to JSON
### Install
go get -u github.com/basgys/goxml2json
### Importing
import github.com/basgys/goxml2json
### Usage
**Code example**
```go
package main
import (
"fmt"
"strings"
xj "github.com/basgys/goxml2json"
)
func main() {
// xml is an io.Reader
xml := strings.NewReader(`<?xml version="1.0" encoding="UTF-8"?><hello>world</hello>`)
json, err := xj.Convert(xml)
if err != nil {
panic("That's embarrassing...")
}
fmt.Println(json.String())
// {"hello": "world"}
}
```
**Input**
```xml
<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGImap 0.0.2">
<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900" maxlon="12.2524800"/>
<foo>bar</foo>
</osm>
```
**Output**
```json
{
"osm": {
"-version": "0.6",
"-generator": "CGImap 0.0.2",
"bounds": {
"-minlat": "54.0889580",
"-minlon": "12.2487570",
"-maxlat": "54.0913900",
"-maxlon": "12.2524800"
},
"foo": "bar"
}
}
```
### Contributing
Feel free to contribute to this project if you want to fix/extend/improve it.
### Contributors
- [DirectX](https://github.com/directx)
- [samuelhug](https://github.com/samuelhug)
### TODO
* Extract data types in JSON (numbers, boolean, ...)
* Categorise errors
* Option to prettify the JSON output
* Benchmark

@ -0,0 +1,25 @@
package xml2json
import (
"bytes"
"io"
)
// Convert converts the given XML document to JSON
func Convert(r io.Reader) (*bytes.Buffer, error) {
// Decode XML document
root := &Node{}
err := NewDecoder(r).Decode(root)
if err != nil {
return nil, err
}
// Then encode it in JSON
buf := new(bytes.Buffer)
err = NewEncoder(buf).Encode(root)
if err != nil {
return nil, err
}
return buf, nil
}

@ -0,0 +1,140 @@
package xml2json
import (
"encoding/xml"
"io"
"unicode"
"golang.org/x/net/html/charset"
)
const (
attrPrefix = "-"
contentPrefix = "#"
)
// A Decoder reads and decodes XML objects from an input stream.
type Decoder struct {
r io.Reader
err error
attributePrefix string
contentPrefix string
}
type element struct {
parent *element
n *Node
label string
}
func (dec *Decoder) SetAttributePrefix(prefix string) {
dec.attributePrefix = prefix
}
func (dec *Decoder) SetContentPrefix(prefix string) {
dec.contentPrefix = prefix
}
func (dec *Decoder) DecodeWithCustomPrefixes(root *Node, contentPrefix string, attributePrefix string) error {
dec.contentPrefix = contentPrefix
dec.attributePrefix = attributePrefix
return dec.Decode(root)
}
// NewDecoder returns a new decoder that reads from r.
func NewDecoder(r io.Reader) *Decoder {
return &Decoder{r: r}
}
// Decode reads the next JSON-encoded value from its
// input and stores it in the value pointed to by v.
func (dec *Decoder) Decode(root *Node) error {
if dec.contentPrefix == "" {
dec.contentPrefix = contentPrefix
}
if dec.attributePrefix == "" {
dec.attributePrefix = attrPrefix
}
xmlDec := xml.NewDecoder(dec.r)
// That will convert the charset if the provided XML is non-UTF-8
xmlDec.CharsetReader = charset.NewReaderLabel
// Create first element from the root node
elem := &element{
parent: nil,
n: root,
}
for {
t, _ := xmlDec.Token()
if t == nil {
break
}
switch se := t.(type) {
case xml.StartElement:
// Build new a new current element and link it to its parent
elem = &element{
parent: elem,
n: &Node{},
label: se.Name.Local,
}
// Extract attributes as children
for _, a := range se.Attr {
elem.n.AddChild(dec.attributePrefix+a.Name.Local, &Node{Data: a.Value})
}
case xml.CharData:
// Extract XML data (if any)
elem.n.Data = trimNonGraphic(string(xml.CharData(se)))
case xml.EndElement:
// And add it to its parent list
if elem.parent != nil {
elem.parent.n.AddChild(elem.label, elem.n)
}
// Then change the current element to its parent
elem = elem.parent
}
}
return nil
}
// trimNonGraphic returns a slice of the string s, with all leading and trailing
// non graphic characters and spaces removed.
//
// Graphic characters include letters, marks, numbers, punctuation, symbols,
// and spaces, from categories L, M, N, P, S, Zs.
// Spacing characters are set by category Z and property Pattern_White_Space.
func trimNonGraphic(s string) string {
if s == "" {
return s
}
var first *int
var last int
for i, r := range []rune(s) {
if !unicode.IsGraphic(r) || unicode.IsSpace(r) {
continue
}
if first == nil {
f := i // copy i
first = &f
last = i
} else {
last = i
}
}
// If first is nil, it means there are no graphic characters
if first == nil {
return ""
}
return string([]rune(s)[*first : last+1])
}

@ -0,0 +1,2 @@
// Package xml2json is an XML to JSON converter
package xml2json

@ -0,0 +1,197 @@
package xml2json
import (
"bytes"
"io"
"unicode/utf8"
)
// An Encoder writes JSON objects to an output stream.
type Encoder struct {
w io.Writer
err error
contentPrefix string
attributePrefix string
}
// NewEncoder returns a new encoder that writes to w.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{w: w}
}
func (enc *Encoder) SetAttributePrefix(prefix string) {
enc.attributePrefix = prefix
}
func (enc *Encoder) SetContentPrefix(prefix string) {
enc.contentPrefix = prefix
}
func (enc *Encoder) EncodeWithCustomPrefixes(root *Node, contentPrefix string, attributePrefix string) error {
enc.contentPrefix = contentPrefix
enc.attributePrefix = attributePrefix
return enc.Encode(root)
}
// Encode writes the JSON encoding of v to the stream
func (enc *Encoder) Encode(root *Node) error {
if enc.err != nil {
return enc.err
}
if root == nil {
return nil
}
if enc.contentPrefix == "" {
enc.contentPrefix = contentPrefix
}
if enc.attributePrefix == "" {
enc.attributePrefix = attrPrefix
}
enc.err = enc.format(root, 0)
// Terminate each value with a newline.
// This makes the output look a little nicer
// when debugging, and some kind of space
// is required if the encoded value was a number,
// so that the reader knows there aren't more
// digits coming.
enc.write("\n")
return enc.err
}
func (enc *Encoder) format(n *Node, lvl int) error {
if n.IsComplex() {
enc.write("{")
// Add data as an additional attibute (if any)
if len(n.Data) > 0 {
enc.write("\"")
enc.write(enc.contentPrefix)
enc.write("content")
enc.write("\": ")
enc.write(sanitiseString(n.Data))
enc.write(", ")
}
i := 0
tot := len(n.Children)
for label, children := range n.Children {
enc.write("\"")
enc.write(label)
enc.write("\": ")
if len(children) > 1 {
// Array
enc.write("[")
for j, c := range children {
enc.format(c, lvl+1)
if j < len(children)-1 {
enc.write(", ")
}
}
enc.write("]")
} else {
// Map
enc.format(children[0], lvl+1)
}
if i < tot-1 {
enc.write(", ")
}
i++
}
enc.write("}")
} else {
// TODO : Extract data type
enc.write(sanitiseString(n.Data))
}
return nil
}
func (enc *Encoder) write(s string) {
enc.w.Write([]byte(s))
}
// https://golang.org/src/encoding/json/encode.go?s=5584:5627#L788
var hex = "0123456789abcdef"
func sanitiseString(s string) string {
var buf bytes.Buffer
buf.WriteByte('"')
start := 0
for i := 0; i < len(s); {
if b := s[i]; b < utf8.RuneSelf {
if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
i++
continue
}
if start < i {
buf.WriteString(s[start:i])
}
switch b {
case '\\', '"':
buf.WriteByte('\\')
buf.WriteByte(b)
case '\n':
buf.WriteByte('\\')
buf.WriteByte('n')
case '\r':
buf.WriteByte('\\')
buf.WriteByte('r')
case '\t':
buf.WriteByte('\\')
buf.WriteByte('t')
default:
// This encodes bytes < 0x20 except for \n and \r,
// as well as <, > and &. The latter are escaped because they
// can lead to security holes when user-controlled strings
// are rendered into JSON and served to some browsers.
buf.WriteString(`\u00`)
buf.WriteByte(hex[b>>4])
buf.WriteByte(hex[b&0xF])
}
i++
start = i
continue
}
c, size := utf8.DecodeRuneInString(s[i:])
if c == utf8.RuneError && size == 1 {
if start < i {
buf.WriteString(s[start:i])
}
buf.WriteString(`\ufffd`)
i += size
start = i
continue
}
// U+2028 is LINE SEPARATOR.
// U+2029 is PARAGRAPH SEPARATOR.
// They are both technically valid characters in JSON strings,
// but don't work in JSONP, which has to be evaluated as JavaScript,
// and can lead to security holes there. It is valid JSON to
// escape them, so we do so unconditionally.
// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
if c == '\u2028' || c == '\u2029' {
if start < i {
buf.WriteString(s[start:i])
}
buf.WriteString(`\u202`)
buf.WriteByte(hex[c&0xF])
i += size
start = i
continue
}
i += size
}
if start < len(s) {
buf.WriteString(s[start:])
}
buf.WriteByte('"')
return buf.String()
}

@ -0,0 +1,25 @@
package xml2json
// Node is a data element on a tree
type Node struct {
Children map[string]Nodes
Data string
}
// Nodes is a list of nodes
type Nodes []*Node
// AddChild appends a node to the list of children
func (n *Node) AddChild(s string, c *Node) {
// Lazy lazy
if n.Children == nil {
n.Children = map[string]Nodes{}
}
n.Children[s] = append(n.Children[s], c)
}
// IsComplex returns whether it is a complex type (has children)
func (n *Node) IsComplex() bool {
return len(n.Children) > 0
}

@ -0,0 +1,14 @@
language: go
sudo: false
go:
- 1.11.x
- tip
matrix:
allow_failures:
- go: tip
script:
- go vet ./...
- go test -v ./...

@ -0,0 +1,10 @@
Brett Vickers (beevik)
Felix Geisendörfer (felixge)
Kamil Kisiel (kisielk)
Graham King (grahamking)
Matt Smith (ma314smith)
Michal Jemala (michaljemala)
Nicolas Piganeau (npiganeau)
Chris Brown (ccbrown)
Earncef Sequeira (earncef)
Gabriel de Labachelerie (wuzuf)

@ -0,0 +1,24 @@
Copyright 2015-2019 Brett Vickers. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDER ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

@ -0,0 +1,205 @@
[![Build Status](https://travis-ci.org/beevik/etree.svg?branch=master)](https://travis-ci.org/beevik/etree)
[![GoDoc](https://godoc.org/github.com/beevik/etree?status.svg)](https://godoc.org/github.com/beevik/etree)
etree
=====
The etree package is a lightweight, pure go package that expresses XML in
the form of an element tree. Its design was inspired by the Python
[ElementTree](http://docs.python.org/2/library/xml.etree.elementtree.html)
module.
Some of the package's capabilities and features:
* Represents XML documents as trees of elements for easy traversal.
* Imports, serializes, modifies or creates XML documents from scratch.
* Writes and reads XML to/from files, byte slices, strings and io interfaces.
* Performs simple or complex searches with lightweight XPath-like query APIs.
* Auto-indents XML using spaces or tabs for better readability.
* Implemented in pure go; depends only on standard go libraries.
* Built on top of the go [encoding/xml](http://golang.org/pkg/encoding/xml)
package.
### Creating an XML document
The following example creates an XML document from scratch using the etree
package and outputs its indented contents to stdout.
```go
doc := etree.NewDocument()
doc.CreateProcInst("xml", `version="1.0" encoding="UTF-8"`)
doc.CreateProcInst("xml-stylesheet", `type="text/xsl" href="style.xsl"`)
people := doc.CreateElement("People")
people.CreateComment("These are all known people")
jon := people.CreateElement("Person")
jon.CreateAttr("name", "Jon")
sally := people.CreateElement("Person")
sally.CreateAttr("name", "Sally")
doc.Indent(2)
doc.WriteTo(os.Stdout)
```
Output:
```xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="style.xsl"?>
<People>
<!--These are all known people-->
<Person name="Jon"/>
<Person name="Sally"/>
</People>
```
### Reading an XML file
Suppose you have a file on disk called `bookstore.xml` containing the
following data:
```xml
<bookstore xmlns:p="urn:schemas-books-com:prices">
<book category="COOKING">
<title lang="en">Everyday Italian</title>
<author>Giada De Laurentiis</author>
<year>2005</year>
<p:price>30.00</p:price>
</book>
<book category="CHILDREN">
<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<p:price>29.99</p:price>
</book>
<book category="WEB">
<title lang="en">XQuery Kick Start</title>
<author>James McGovern</author>
<author>Per Bothner</author>
<author>Kurt Cagle</author>
<author>James Linn</author>
<author>Vaidyanathan Nagarajan</author>
<year>2003</year>
<p:price>49.99</p:price>
</book>
<book category="WEB">
<title lang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<p:price>39.95</p:price>
</book>
</bookstore>
```
This code reads the file's contents into an etree document.
```go
doc := etree.NewDocument()
if err := doc.ReadFromFile("bookstore.xml"); err != nil {
panic(err)
}
```
You can also read XML from a string, a byte slice, or an `io.Reader`.
### Processing elements and attributes
This example illustrates several ways to access elements and attributes using
etree selection queries.
```go
root := doc.SelectElement("bookstore")
fmt.Println("ROOT element:", root.Tag)
for _, book := range root.SelectElements("book") {
fmt.Println("CHILD element:", book.Tag)
if title := book.SelectElement("title"); title != nil {
lang := title.SelectAttrValue("lang", "unknown")
fmt.Printf(" TITLE: %s (%s)\n", title.Text(), lang)
}
for _, attr := range book.Attr {
fmt.Printf(" ATTR: %s=%s\n", attr.Key, attr.Value)
}
}
```
Output:
```
ROOT element: bookstore
CHILD element: book
TITLE: Everyday Italian (en)
ATTR: category=COOKING
CHILD element: book
TITLE: Harry Potter (en)
ATTR: category=CHILDREN
CHILD element: book
TITLE: XQuery Kick Start (en)
ATTR: category=WEB
CHILD element: book
TITLE: Learning XML (en)
ATTR: category=WEB
```
### Path queries
This example uses etree's path functions to select all book titles that fall
into the category of 'WEB'. The double-slash prefix in the path causes the
search for book elements to occur recursively; book elements may appear at any
level of the XML hierarchy.
```go
for _, t := range doc.FindElements("//book[@category='WEB']/title") {
fmt.Println("Title:", t.Text())
}
```
Output:
```
Title: XQuery Kick Start
Title: Learning XML
```
This example finds the first book element under the root bookstore element and
outputs the tag and text of each of its child elements.
```go
for _, e := range doc.FindElements("./bookstore/book[1]/*") {
fmt.Printf("%s: %s\n", e.Tag, e.Text())
}
```
Output:
```
title: Everyday Italian
author: Giada De Laurentiis
year: 2005
price: 30.00
```
This example finds all books with a price of 49.99 and outputs their titles.
```go
path := etree.MustCompilePath("./bookstore/book[p:price='49.99']/title")
for _, e := range doc.FindElementsPath(path) {
fmt.Println(e.Text())
}
```
Output:
```
XQuery Kick Start
```
Note that this example uses the FindElementsPath function, which takes as an
argument a pre-compiled path object. Use precompiled paths when you plan to
search with the same path more than once.
### Other features
These are just a few examples of the things the etree package can do. See the
[documentation](http://godoc.org/github.com/beevik/etree) for a complete
description of its capabilities.
### Contributing
This project accepts contributions. Just fork the repo and submit a pull
request!

@ -0,0 +1,109 @@
Release v1.1.0
==============
**New Features**
* New attribute helpers.
* Added the `Element.SortAttrs` method, which lexicographically sorts an
element's attributes by key.
* New `ReadSettings` properties.
* Added `Entity` for the support of custom entity maps.
* New `WriteSettings` properties.
* Added `UseCRLF` to allow the output of CR-LF newlines instead of the
default LF newlines. This is useful on Windows systems.
* Additional support for text and CDATA sections.
* The `Element.Text` method now returns the concatenation of all consecutive
character data tokens immediately following an element's opening tag.
* Added `Element.SetCData` to replace the character data immediately
following an element's opening tag with a CDATA section.
* Added `Element.CreateCData` to create and add a CDATA section child
`CharData` token to an element.
* Added `Element.CreateText` to create and add a child text `CharData` token
to an element.
* Added `NewCData` to create a parentless CDATA section `CharData` token.
* Added `NewText` to create a parentless text `CharData`
token.
* Added `CharData.IsCData` to detect if the token contains a CDATA section.
* Added `CharData.IsWhitespace` to detect if the token contains whitespace
inserted by one of the document Indent functions.
* Modified `Element.SetText` so that it replaces a run of consecutive
character data tokens following the element's opening tag (instead of just
the first one).
* New "tail text" support.
* Added the `Element.Tail` method, which returns the text immediately
following an element's closing tag.
* Added the `Element.SetTail` method, which modifies the text immediately
following an element's closing tag.
* New element child insertion and removal methods.
* Added the `Element.InsertChildAt` method, which inserts a new child token
before the specified child token index.
* Added the `Element.RemoveChildAt` method, which removes the child token at
the specified child token index.
* New element and attribute queries.
* Added the `Element.Index` method, which returns the element's index within
its parent element's child token list.
* Added the `Element.NamespaceURI` method to return the namespace URI
associated with an element.
* Added the `Attr.NamespaceURI` method to return the namespace URI
associated with an element.
* Added the `Attr.Element` method to return the element that an attribute
belongs to.
* New Path filter functions.
* Added `[local-name()='val']` to keep elements whose unprefixed tag matches
the desired value.
* Added `[name()='val']` to keep elements whose full tag matches the desired
value.
* Added `[namespace-prefix()='val']` to keep elements whose namespace prefix
matches the desired value.
* Added `[namespace-uri()='val']` to keep elements whose namespace URI
matches the desired value.
**Bug Fixes**
* A default XML `CharSetReader` is now used to prevent failed parsing of XML
documents using certain encodings.
([Issue](https://github.com/beevik/etree/issues/53)).
* All characters are now properly escaped according to XML parsing rules.
([Issue](https://github.com/beevik/etree/issues/55)).
* The `Document.Indent` and `Document.IndentTabs` functions no longer insert
empty string `CharData` tokens.
**Deprecated**
* `Element`
* The `InsertChild` method is deprecated. Use `InsertChildAt` instead.
* The `CreateCharData` method is deprecated. Use `CreateText` instead.
* `CharData`
* The `NewCharData` method is deprecated. Use `NewText` instead.
Release v1.0.1
==============
**Changes**
* Added support for absolute etree Path queries. An absolute path begins with
`/` or `//` and begins its search from the element's document root.
* Added [`GetPath`](https://godoc.org/github.com/beevik/etree#Element.GetPath)
and [`GetRelativePath`](https://godoc.org/github.com/beevik/etree#Element.GetRelativePath)
functions to the [`Element`](https://godoc.org/github.com/beevik/etree#Element)
type.
**Breaking changes**
* A path starting with `//` is now interpreted as an absolute path.
Previously, it was interpreted as a relative path starting from the element
whose
[`FindElement`](https://godoc.org/github.com/beevik/etree#Element.FindElement)
method was called. To remain compatible with this release, all paths
prefixed with `//` should be prefixed with `.//` when called from any
element other than the document's root.
* [**edit 2/1/2019**]: Minor releases should not contain breaking changes.
Even though this breaking change was very minor, it was a mistake to include
it in this minor release. In the future, all breaking changes will be
limited to major releases (e.g., version 2.0.0).
Release v1.0.0
==============
Initial release.

File diff suppressed because it is too large Load Diff

@ -0,0 +1,276 @@
// Copyright 2015-2019 Brett Vickers.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package etree
import (
"bufio"
"io"
"strings"
"unicode/utf8"
)
// A simple stack
type stack struct {
data []interface{}
}
func (s *stack) empty() bool {
return len(s.data) == 0
}
func (s *stack) push(value interface{}) {
s.data = append(s.data, value)
}
func (s *stack) pop() interface{} {
value := s.data[len(s.data)-1]
s.data[len(s.data)-1] = nil
s.data = s.data[:len(s.data)-1]
return value
}
func (s *stack) peek() interface{} {
return s.data[len(s.data)-1]
}
// A fifo is a simple first-in-first-out queue.
type fifo struct {
data []interface{}
head, tail int
}
func (f *fifo) add(value interface{}) {
if f.len()+1 >= len(f.data) {
f.grow()
}
f.data[f.tail] = value
if f.tail++; f.tail == len(f.data) {
f.tail = 0
}
}
func (f *fifo) remove() interface{} {
value := f.data[f.head]
f.data[f.head] = nil
if f.head++; f.head == len(f.data) {
f.head = 0
}
return value
}
func (f *fifo) len() int {
if f.tail >= f.head {
return f.tail - f.head
}
return len(f.data) - f.head + f.tail
}
func (f *fifo) grow() {
c := len(f.data) * 2
if c == 0 {
c = 4
}
buf, count := make([]interface{}, c), f.len()
if f.tail >= f.head {
copy(buf[0:count], f.data[f.head:f.tail])
} else {
hindex := len(f.data) - f.head
copy(buf[0:hindex], f.data[f.head:])
copy(buf[hindex:count], f.data[:f.tail])
}
f.data, f.head, f.tail = buf, 0, count
}
// countReader implements a proxy reader that counts the number of
// bytes read from its encapsulated reader.
type countReader struct {
r io.Reader
bytes int64
}
func newCountReader(r io.Reader) *countReader {
return &countReader{r: r}
}
func (cr *countReader) Read(p []byte) (n int, err error) {
b, err := cr.r.Read(p)
cr.bytes += int64(b)
return b, err
}
// countWriter implements a proxy writer that counts the number of
// bytes written by its encapsulated writer.
type countWriter struct {
w io.Writer
bytes int64
}
func newCountWriter(w io.Writer) *countWriter {
return &countWriter{w: w}
}
func (cw *countWriter) Write(p []byte) (n int, err error) {
b, err := cw.w.Write(p)
cw.bytes += int64(b)
return b, err
}
// isWhitespace returns true if the byte slice contains only
// whitespace characters.
func isWhitespace(s string) bool {
for i := 0; i < len(s); i++ {
if c := s[i]; c != ' ' && c != '\t' && c != '\n' && c != '\r' {
return false
}
}
return true
}
// spaceMatch returns true if namespace a is the empty string
// or if namespace a equals namespace b.
func spaceMatch(a, b string) bool {
switch {
case a == "":
return true
default:
return a == b
}
}
// spaceDecompose breaks a namespace:tag identifier at the ':'
// and returns the two parts.
func spaceDecompose(str string) (space, key string) {
colon := strings.IndexByte(str, ':')
if colon == -1 {
return "", str
}
return str[:colon], str[colon+1:]
}
// Strings used by indentCRLF and indentLF
const (
indentSpaces = "\r\n "
indentTabs = "\r\n\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"
)
// indentCRLF returns a CRLF newline followed by n copies of the first
// non-CRLF character in the source string.
func indentCRLF(n int, source string) string {
switch {
case n < 0:
return source[:2]
case n < len(source)-1:
return source[:n+2]
default:
return source + strings.Repeat(source[2:3], n-len(source)+2)
}
}
// indentLF returns a LF newline followed by n copies of the first non-LF
// character in the source string.
func indentLF(n int, source string) string {
switch {
case n < 0:
return source[1:2]
case n < len(source)-1:
return source[1 : n+2]
default:
return source[1:] + strings.Repeat(source[2:3], n-len(source)+2)
}
}
// nextIndex returns the index of the next occurrence of sep in s,
// starting from offset. It returns -1 if the sep string is not found.
func nextIndex(s, sep string, offset int) int {
switch i := strings.Index(s[offset:], sep); i {
case -1:
return -1
default:
return offset + i
}
}
// isInteger returns true if the string s contains an integer.
func isInteger(s string) bool {
for i := 0; i < len(s); i++ {
if (s[i] < '0' || s[i] > '9') && !(i == 0 && s[i] == '-') {
return false
}
}
return true
}
type escapeMode byte
const (
escapeNormal escapeMode = iota
escapeCanonicalText
escapeCanonicalAttr
)
// escapeString writes an escaped version of a string to the writer.
func escapeString(w *bufio.Writer, s string, m escapeMode) {
var esc []byte
last := 0
for i := 0; i < len(s); {
r, width := utf8.DecodeRuneInString(s[i:])
i += width
switch r {
case '&':
esc = []byte("&amp;")
case '<':
esc = []byte("&lt;")
case '>':
if m == escapeCanonicalAttr {
continue
}
esc = []byte("&gt;")
case '\'':
if m != escapeNormal {
continue
}
esc = []byte("&apos;")
case '"':
if m == escapeCanonicalText {
continue
}
esc = []byte("&quot;")
case '\t':
if m != escapeCanonicalAttr {
continue
}
esc = []byte("&#x9;")
case '\n':
if m != escapeCanonicalAttr {
continue
}
esc = []byte("&#xA;")
case '\r':
if m == escapeNormal {
continue
}
esc = []byte("&#xD;")
default:
if !isInCharacterRange(r) || (r == 0xFFFD && width == 1) {
esc = []byte("\uFFFD")
break
}
continue
}
w.WriteString(s[last : i-width])
w.Write(esc)
last = i
}
w.WriteString(s[last:])
}
func isInCharacterRange(r rune) bool {
return r == 0x09 ||
r == 0x0A ||
r == 0x0D ||
r >= 0x20 && r <= 0xD7FF ||
r >= 0xE000 && r <= 0xFFFD ||
r >= 0x10000 && r <= 0x10FFFF
}

@ -0,0 +1,582 @@
// Copyright 2015-2019 Brett Vickers.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package etree
import (
"strconv"
"strings"
)
/*
A Path is a string that represents a search path through an etree starting
from the document root or an arbitrary element. Paths are used with the
Element object's Find* methods to locate and return desired elements.
A Path consists of a series of slash-separated "selectors", each of which may
be modified by one or more bracket-enclosed "filters". Selectors are used to
traverse the etree from element to element, while filters are used to narrow
the list of candidate elements at each node.
Although etree Path strings are similar to XPath strings
(https://www.w3.org/TR/1999/REC-xpath-19991116/), they have a more limited set
of selectors and filtering options.
The following selectors are supported by etree Path strings:
. Select the current element.
.. Select the parent of the current element.
* Select all child elements of the current element.
/ Select the root element when used at the start of a path.
// Select all descendants of the current element.
tag Select all child elements with a name matching the tag.
The following basic filters are supported by etree Path strings:
[@attrib] Keep elements with an attribute named attrib.
[@attrib='val'] Keep elements with an attribute named attrib and value matching val.
[tag] Keep elements with a child element named tag.
[tag='val'] Keep elements with a child element named tag and text matching val.
[n] Keep the n-th element, where n is a numeric index starting from 1.
The following function filters are also supported:
[text()] Keep elements with non-empty text.
[text()='val'] Keep elements whose text matches val.
[local-name()='val'] Keep elements whose un-prefixed tag matches val.
[name()='val'] Keep elements whose full tag exactly matches val.
[namespace-prefix()='val'] Keep elements whose namespace prefix matches val.
[namespace-uri()='val'] Keep elements whose namespace URI matches val.
Here are some examples of Path strings:
- Select the bookstore child element of the root element:
/bookstore
- Beginning from the root element, select the title elements of all
descendant book elements having a 'category' attribute of 'WEB':
//book[@category='WEB']/title
- Beginning from the current element, select the first descendant
book element with a title child element containing the text 'Great
Expectations':
.//book[title='Great Expectations'][1]
- Beginning from the current element, select all child elements of
book elements with an attribute 'language' set to 'english':
./book/*[@language='english']
- Beginning from the current element, select all child elements of
book elements containing the text 'special':
./book/*[text()='special']
- Beginning from the current element, select all descendant book
elements whose title child element has a 'language' attribute of 'french':
.//book/title[@language='french']/..
- Beginning from the current element, select all book elements
belonging to the http://www.w3.org/TR/html4/ namespace:
.//book[namespace-uri()='http://www.w3.org/TR/html4/']
*/
type Path struct {
segments []segment
}
// ErrPath is returned by path functions when an invalid etree path is provided.
type ErrPath string
// Error returns the string describing a path error.
func (err ErrPath) Error() string {
return "etree: " + string(err)
}
// CompilePath creates an optimized version of an XPath-like string that
// can be used to query elements in an element tree.
func CompilePath(path string) (Path, error) {
var comp compiler
segments := comp.parsePath(path)
if comp.err != ErrPath("") {
return Path{nil}, comp.err
}
return Path{segments}, nil
}
// MustCompilePath creates an optimized version of an XPath-like string that
// can be used to query elements in an element tree. Panics if an error
// occurs. Use this function to create Paths when you know the path is
// valid (i.e., if it's hard-coded).
func MustCompilePath(path string) Path {
p, err := CompilePath(path)
if err != nil {
panic(err)
}
return p
}
// A segment is a portion of a path between "/" characters.
// It contains one selector and zero or more [filters].
type segment struct {
sel selector
filters []filter
}
func (seg *segment) apply(e *Element, p *pather) {
seg.sel.apply(e, p)
for _, f := range seg.filters {
f.apply(p)
}
}
// A selector selects XML elements for consideration by the
// path traversal.
type selector interface {
apply(e *Element, p *pather)
}
// A filter pares down a list of candidate XML elements based
// on a path filter in [brackets].
type filter interface {
apply(p *pather)
}
// A pather is helper object that traverses an element tree using
// a Path object. It collects and deduplicates all elements matching
// the path query.
type pather struct {
queue fifo
results []*Element
inResults map[*Element]bool
candidates []*Element
scratch []*Element // used by filters
}
// A node represents an element and the remaining path segments that
// should be applied against it by the pather.
type node struct {
e *Element
segments []segment
}
func newPather() *pather {
return &pather{
results: make([]*Element, 0),
inResults: make(map[*Element]bool),
candidates: make([]*Element, 0),
scratch: make([]*Element, 0),
}
}
// traverse follows the path from the element e, collecting
// and then returning all elements that match the path's selectors
// and filters.
func (p *pather) traverse(e *Element, path Path) []*Element {
for p.queue.add(node{e, path.segments}); p.queue.len() > 0; {
p.eval(p.queue.remove().(node))
}
return p.results
}
// eval evalutes the current path node by applying the remaining
// path's selector rules against the node's element.
func (p *pather) eval(n node) {
p.candidates = p.candidates[0:0]
seg, remain := n.segments[0], n.segments[1:]
seg.apply(n.e, p)
if len(remain) == 0 {
for _, c := range p.candidates {
if in := p.inResults[c]; !in {
p.inResults[c] = true
p.results = append(p.results, c)
}
}
} else {
for _, c := range p.candidates {
p.queue.add(node{c, remain})
}
}
}
// A compiler generates a compiled path from a path string.
type compiler struct {
err ErrPath
}
// parsePath parses an XPath-like string describing a path
// through an element tree and returns a slice of segment
// descriptors.
func (c *compiler) parsePath(path string) []segment {
// If path ends with //, fix it
if strings.HasSuffix(path, "//") {
path = path + "*"
}
var segments []segment
// Check for an absolute path
if strings.HasPrefix(path, "/") {
segments = append(segments, segment{new(selectRoot), []filter{}})
path = path[1:]
}
// Split path into segments
for _, s := range splitPath(path) {
segments = append(segments, c.parseSegment(s))
if c.err != ErrPath("") {
break
}
}
return segments
}
func splitPath(path string) []string {
pieces := make([]string, 0)
start := 0
inquote := false
for i := 0; i+1 <= len(path); i++ {
if path[i] == '\'' {
inquote = !inquote
} else if path[i] == '/' && !inquote {
pieces = append(pieces, path[start:i])
start = i + 1
}
}
return append(pieces, path[start:])
}
// parseSegment parses a path segment between / characters.
func (c *compiler) parseSegment(path string) segment {
pieces := strings.Split(path, "[")
seg := segment{
sel: c.parseSelector(pieces[0]),
filters: []filter{},
}
for i := 1; i < len(pieces); i++ {
fpath := pieces[i]
if fpath[len(fpath)-1] != ']' {
c.err = ErrPath("path has invalid filter [brackets].")
break
}
seg.filters = append(seg.filters, c.parseFilter(fpath[:len(fpath)-1]))
}
return seg
}
// parseSelector parses a selector at the start of a path segment.
func (c *compiler) parseSelector(path string) selector {
switch path {
case ".":
return new(selectSelf)
case "..":
return new(selectParent)
case "*":
return new(selectChildren)
case "":
return new(selectDescendants)
default:
return newSelectChildrenByTag(path)
}
}
var fnTable = map[string]struct {
hasFn func(e *Element) bool
getValFn func(e *Element) string
}{
"local-name": {nil, (*Element).name},
"name": {nil, (*Element).FullTag},
"namespace-prefix": {nil, (*Element).namespacePrefix},
"namespace-uri": {nil, (*Element).NamespaceURI},
"text": {(*Element).hasText, (*Element).Text},
}
// parseFilter parses a path filter contained within [brackets].
func (c *compiler) parseFilter(path string) filter {
if len(path) == 0 {
c.err = ErrPath("path contains an empty filter expression.")
return nil
}
// Filter contains [@attr='val'], [fn()='val'], or [tag='val']?
eqindex := strings.Index(path, "='")
if eqindex >= 0 {
rindex := nextIndex(path, "'", eqindex+2)
if rindex != len(path)-1 {
c.err = ErrPath("path has mismatched filter quotes.")
return nil
}
key := path[:eqindex]
value := path[eqindex+2 : rindex]
switch {
case key[0] == '@':
return newFilterAttrVal(key[1:], value)
case strings.HasSuffix(key, "()"):
fn := key[:len(key)-2]
if t, ok := fnTable[fn]; ok && t.getValFn != nil {
return newFilterFuncVal(t.getValFn, value)
}
c.err = ErrPath("path has unknown function " + fn)
return nil
default:
return newFilterChildText(key, value)
}
}
// Filter contains [@attr], [N], [tag] or [fn()]
switch {
case path[0] == '@':
return newFilterAttr(path[1:])
case strings.HasSuffix(path, "()"):
fn := path[:len(path)-2]
if t, ok := fnTable[fn]; ok && t.hasFn != nil {
return newFilterFunc(t.hasFn)
}
c.err = ErrPath("path has unknown function " + fn)
return nil
case isInteger(path):
pos, _ := strconv.Atoi(path)
switch {
case pos > 0:
return newFilterPos(pos - 1)
default:
return newFilterPos(pos)
}
default:
return newFilterChild(path)
}
}
// selectSelf selects the current element into the candidate list.
type selectSelf struct{}
func (s *selectSelf) apply(e *Element, p *pather) {
p.candidates = append(p.candidates, e)
}
// selectRoot selects the element's root node.
type selectRoot struct{}
func (s *selectRoot) apply(e *Element, p *pather) {
root := e
for root.parent != nil {
root = root.parent
}
p.candidates = append(p.candidates, root)
}
// selectParent selects the element's parent into the candidate list.
type selectParent struct{}
func (s *selectParent) apply(e *Element, p *pather) {
if e.parent != nil {
p.candidates = append(p.candidates, e.parent)
}
}
// selectChildren selects the element's child elements into the
// candidate list.
type selectChildren struct{}
func (s *selectChildren) apply(e *Element, p *pather) {
for _, c := range e.Child {
if c, ok := c.(*Element); ok {
p.candidates = append(p.candidates, c)
}
}
}
// selectDescendants selects all descendant child elements
// of the element into the candidate list.
type selectDescendants struct{}
func (s *selectDescendants) apply(e *Element, p *pather) {
var queue fifo
for queue.add(e); queue.len() > 0; {
e := queue.remove().(*Element)
p.candidates = append(p.candidates, e)
for _, c := range e.Child {
if c, ok := c.(*Element); ok {
queue.add(c)
}
}
}
}
// selectChildrenByTag selects into the candidate list all child
// elements of the element having the specified tag.
type selectChildrenByTag struct {
space, tag string
}
func newSelectChildrenByTag(path string) *selectChildrenByTag {
s, l := spaceDecompose(path)
return &selectChildrenByTag{s, l}
}
func (s *selectChildrenByTag) apply(e *Element, p *pather) {
for _, c := range e.Child {
if c, ok := c.(*Element); ok && spaceMatch(s.space, c.Space) && s.tag == c.Tag {
p.candidates = append(p.candidates, c)
}
}
}
// filterPos filters the candidate list, keeping only the
// candidate at the specified index.
type filterPos struct {
index int
}
func newFilterPos(pos int) *filterPos {
return &filterPos{pos}
}
func (f *filterPos) apply(p *pather) {
if f.index >= 0 {
if f.index < len(p.candidates) {
p.scratch = append(p.scratch, p.candidates[f.index])
}
} else {
if -f.index <= len(p.candidates) {
p.scratch = append(p.scratch, p.candidates[len(p.candidates)+f.index])
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterAttr filters the candidate list for elements having
// the specified attribute.
type filterAttr struct {
space, key string
}
func newFilterAttr(str string) *filterAttr {
s, l := spaceDecompose(str)
return &filterAttr{s, l}
}
func (f *filterAttr) apply(p *pather) {
for _, c := range p.candidates {
for _, a := range c.Attr {
if spaceMatch(f.space, a.Space) && f.key == a.Key {
p.scratch = append(p.scratch, c)
break
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterAttrVal filters the candidate list for elements having
// the specified attribute with the specified value.
type filterAttrVal struct {
space, key, val string
}
func newFilterAttrVal(str, value string) *filterAttrVal {
s, l := spaceDecompose(str)
return &filterAttrVal{s, l, value}
}
func (f *filterAttrVal) apply(p *pather) {
for _, c := range p.candidates {
for _, a := range c.Attr {
if spaceMatch(f.space, a.Space) && f.key == a.Key && f.val == a.Value {
p.scratch = append(p.scratch, c)
break
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterFunc filters the candidate list for elements satisfying a custom
// boolean function.
type filterFunc struct {
fn func(e *Element) bool
}
func newFilterFunc(fn func(e *Element) bool) *filterFunc {
return &filterFunc{fn}
}
func (f *filterFunc) apply(p *pather) {
for _, c := range p.candidates {
if f.fn(c) {
p.scratch = append(p.scratch, c)
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterFuncVal filters the candidate list for elements containing a value
// matching the result of a custom function.
type filterFuncVal struct {
fn func(e *Element) string
val string
}
func newFilterFuncVal(fn func(e *Element) string, value string) *filterFuncVal {
return &filterFuncVal{fn, value}
}
func (f *filterFuncVal) apply(p *pather) {
for _, c := range p.candidates {
if f.fn(c) == f.val {
p.scratch = append(p.scratch, c)
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterChild filters the candidate list for elements having
// a child element with the specified tag.
type filterChild struct {
space, tag string
}
func newFilterChild(str string) *filterChild {
s, l := spaceDecompose(str)
return &filterChild{s, l}
}
func (f *filterChild) apply(p *pather) {
for _, c := range p.candidates {
for _, cc := range c.Child {
if cc, ok := cc.(*Element); ok &&
spaceMatch(f.space, cc.Space) &&
f.tag == cc.Tag {
p.scratch = append(p.scratch, c)
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}
// filterChildText filters the candidate list for elements having
// a child element with the specified tag and text.
type filterChildText struct {
space, tag, text string
}
func newFilterChildText(str, text string) *filterChildText {
s, l := spaceDecompose(str)
return &filterChildText{s, l, text}
}
func (f *filterChildText) apply(p *pather) {
for _, c := range p.candidates {
for _, cc := range c.Child {
if cc, ok := cc.(*Element); ok &&
spaceMatch(f.space, cc.Space) &&
f.tag == cc.Tag &&
f.text == cc.Text() {
p.scratch = append(p.scratch, c)
}
}
}
p.candidates, p.scratch = p.scratch, p.candidates[0:0]
}

3
vendor/golang.org/x/net/AUTHORS generated vendored

@ -0,0 +1,3 @@
# This source code refers to The Go Authors for copyright purposes.
# The master list of authors is in the main Go distribution,
# visible at http://tip.golang.org/AUTHORS.

@ -0,0 +1,3 @@
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at http://tip.golang.org/CONTRIBUTORS.

27
vendor/golang.org/x/net/LICENSE generated vendored

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/net/PATENTS generated vendored

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

@ -0,0 +1,78 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package atom provides integer codes (also known as atoms) for a fixed set of
// frequently occurring HTML strings: tag names and attribute keys such as "p"
// and "id".
//
// Sharing an atom's name between all elements with the same tag can result in
// fewer string allocations when tokenizing and parsing HTML. Integer
// comparisons are also generally faster than string comparisons.
//
// The value of an atom's particular code is not guaranteed to stay the same
// between versions of this package. Neither is any ordering guaranteed:
// whether atom.H1 < atom.H2 may also change. The codes are not guaranteed to
// be dense. The only guarantees are that e.g. looking up "div" will yield
// atom.Div, calling atom.Div.String will return "div", and atom.Div != 0.
package atom // import "golang.org/x/net/html/atom"
// Atom is an integer code for a string. The zero value maps to "".
type Atom uint32
// String returns the atom's name.
func (a Atom) String() string {
start := uint32(a >> 8)
n := uint32(a & 0xff)
if start+n > uint32(len(atomText)) {
return ""
}
return atomText[start : start+n]
}
func (a Atom) string() string {
return atomText[a>>8 : a>>8+a&0xff]
}
// fnv computes the FNV hash with an arbitrary starting value h.
func fnv(h uint32, s []byte) uint32 {
for i := range s {
h ^= uint32(s[i])
h *= 16777619
}
return h
}
func match(s string, t []byte) bool {
for i, c := range t {
if s[i] != c {
return false
}
}
return true
}
// Lookup returns the atom whose name is s. It returns zero if there is no
// such atom. The lookup is case sensitive.
func Lookup(s []byte) Atom {
if len(s) == 0 || len(s) > maxAtomLen {
return 0
}
h := fnv(hash0, s)
if a := table[h&uint32(len(table)-1)]; int(a&0xff) == len(s) && match(a.string(), s) {
return a
}
if a := table[(h>>16)&uint32(len(table)-1)]; int(a&0xff) == len(s) && match(a.string(), s) {
return a
}
return 0
}
// String returns a string whose contents are equal to s. In that sense, it is
// equivalent to string(s) but may be more efficient.
func String(s []byte) string {
if a := Lookup(s); a != 0 {
return a.String()
}
return string(s)
}

@ -0,0 +1,783 @@
// Code generated by go generate gen.go; DO NOT EDIT.
//go:generate go run gen.go
package atom
const (
A Atom = 0x1
Abbr Atom = 0x4
Accept Atom = 0x1a06
AcceptCharset Atom = 0x1a0e
Accesskey Atom = 0x2c09
Acronym Atom = 0xaa07
Action Atom = 0x27206
Address Atom = 0x6f307
Align Atom = 0xb105
Allowfullscreen Atom = 0x2080f
Allowpaymentrequest Atom = 0xc113
Allowusermedia Atom = 0xdd0e
Alt Atom = 0xf303
Annotation Atom = 0x1c90a
AnnotationXml Atom = 0x1c90e
Applet Atom = 0x31906
Area Atom = 0x35604
Article Atom = 0x3fc07
As Atom = 0x3c02
Aside Atom = 0x10705
Async Atom = 0xff05
Audio Atom = 0x11505
Autocomplete Atom = 0x2780c
Autofocus Atom = 0x12109
Autoplay Atom = 0x13c08
B Atom = 0x101
Base Atom = 0x3b04
Basefont Atom = 0x3b08
Bdi Atom = 0xba03
Bdo Atom = 0x14b03
Bgsound Atom = 0x15e07
Big Atom = 0x17003
Blink Atom = 0x17305
Blockquote Atom = 0x1870a
Body Atom = 0x2804
Br Atom = 0x202
Button Atom = 0x19106
Canvas Atom = 0x10306
Caption Atom = 0x23107
Center Atom = 0x22006
Challenge Atom = 0x29b09
Charset Atom = 0x2107
Checked Atom = 0x47907
Cite Atom = 0x19c04
Class Atom = 0x56405
Code Atom = 0x5c504
Col Atom = 0x1ab03
Colgroup Atom = 0x1ab08
Color Atom = 0x1bf05
Cols Atom = 0x1c404
Colspan Atom = 0x1c407
Command Atom = 0x1d707
Content Atom = 0x58b07
Contenteditable Atom = 0x58b0f
Contextmenu Atom = 0x3800b
Controls Atom = 0x1de08
Coords Atom = 0x1ea06
Crossorigin Atom = 0x1fb0b
Data Atom = 0x4a504
Datalist Atom = 0x4a508
Datetime Atom = 0x2b808
Dd Atom = 0x2d702
Default Atom = 0x10a07
Defer Atom = 0x5c705
Del Atom = 0x45203
Desc Atom = 0x56104
Details Atom = 0x7207
Dfn Atom = 0x8703
Dialog Atom = 0xbb06
Dir Atom = 0x9303
Dirname Atom = 0x9307
Disabled Atom = 0x16408
Div Atom = 0x16b03
Dl Atom = 0x5e602
Download Atom = 0x46308
Draggable Atom = 0x17a09
Dropzone Atom = 0x40508
Dt Atom = 0x64b02
Em Atom = 0x6e02
Embed Atom = 0x6e05
Enctype Atom = 0x28d07
Face Atom = 0x21e04
Fieldset Atom = 0x22608
Figcaption Atom = 0x22e0a
Figure Atom = 0x24806
Font Atom = 0x3f04
Footer Atom = 0xf606
For Atom = 0x25403
ForeignObject Atom = 0x2540d
Foreignobject Atom = 0x2610d
Form Atom = 0x26e04
Formaction Atom = 0x26e0a
Formenctype Atom = 0x2890b
Formmethod Atom = 0x2a40a
Formnovalidate Atom = 0x2ae0e
Formtarget Atom = 0x2c00a
Frame Atom = 0x8b05
Frameset Atom = 0x8b08
H1 Atom = 0x15c02
H2 Atom = 0x2de02
H3 Atom = 0x30d02
H4 Atom = 0x34502
H5 Atom = 0x34f02
H6 Atom = 0x64d02
Head Atom = 0x33104
Header Atom = 0x33106
Headers Atom = 0x33107
Height Atom = 0x5206
Hgroup Atom = 0x2ca06
Hidden Atom = 0x2d506
High Atom = 0x2db04
Hr Atom = 0x15702
Href Atom = 0x2e004
Hreflang Atom = 0x2e008
Html Atom = 0x5604
HttpEquiv Atom = 0x2e80a
I Atom = 0x601
Icon Atom = 0x58a04
Id Atom = 0x10902
Iframe Atom = 0x2fc06
Image Atom = 0x30205
Img Atom = 0x30703
Input Atom = 0x44b05
Inputmode Atom = 0x44b09
Ins Atom = 0x20403
Integrity Atom = 0x23f09
Is Atom = 0x16502
Isindex Atom = 0x30f07
Ismap Atom = 0x31605
Itemid Atom = 0x38b06
Itemprop Atom = 0x19d08
Itemref Atom = 0x3cd07
Itemscope Atom = 0x67109
Itemtype Atom = 0x31f08
Kbd Atom = 0xb903
Keygen Atom = 0x3206
Keytype Atom = 0xd607
Kind Atom = 0x17704
Label Atom = 0x5905
Lang Atom = 0x2e404
Legend Atom = 0x18106
Li Atom = 0xb202
Link Atom = 0x17404
List Atom = 0x4a904
Listing Atom = 0x4a907
Loop Atom = 0x5d04
Low Atom = 0xc303
Main Atom = 0x1004
Malignmark Atom = 0xb00a
Manifest Atom = 0x6d708
Map Atom = 0x31803
Mark Atom = 0xb604
Marquee Atom = 0x32707
Math Atom = 0x32e04
Max Atom = 0x33d03
Maxlength Atom = 0x33d09
Media Atom = 0xe605
Mediagroup Atom = 0xe60a
Menu Atom = 0x38704
Menuitem Atom = 0x38708
Meta Atom = 0x4b804
Meter Atom = 0x9805
Method Atom = 0x2a806
Mglyph Atom = 0x30806
Mi Atom = 0x34702
Min Atom = 0x34703
Minlength Atom = 0x34709
Mn Atom = 0x2b102
Mo Atom = 0xa402
Ms Atom = 0x67402
Mtext Atom = 0x35105
Multiple Atom = 0x35f08
Muted Atom = 0x36705
Name Atom = 0x9604
Nav Atom = 0x1303
Nobr Atom = 0x3704
Noembed Atom = 0x6c07
Noframes Atom = 0x8908
Nomodule Atom = 0xa208
Nonce Atom = 0x1a605
Noscript Atom = 0x21608
Novalidate Atom = 0x2b20a
Object Atom = 0x26806
Ol Atom = 0x13702
Onabort Atom = 0x19507
Onafterprint Atom = 0x2360c
Onautocomplete Atom = 0x2760e
Onautocompleteerror Atom = 0x27613
Onauxclick Atom = 0x61f0a
Onbeforeprint Atom = 0x69e0d
Onbeforeunload Atom = 0x6e70e
Onblur Atom = 0x56d06
Oncancel Atom = 0x11908
Oncanplay Atom = 0x14d09
Oncanplaythrough Atom = 0x14d10
Onchange Atom = 0x41b08
Onclick Atom = 0x2f507
Onclose Atom = 0x36c07
Oncontextmenu Atom = 0x37e0d
Oncopy Atom = 0x39106
Oncuechange Atom = 0x3970b
Oncut Atom = 0x3a205
Ondblclick Atom = 0x3a70a
Ondrag Atom = 0x3b106
Ondragend Atom = 0x3b109
Ondragenter Atom = 0x3ba0b
Ondragexit Atom = 0x3c50a
Ondragleave Atom = 0x3df0b
Ondragover Atom = 0x3ea0a
Ondragstart Atom = 0x3f40b
Ondrop Atom = 0x40306
Ondurationchange Atom = 0x41310
Onemptied Atom = 0x40a09
Onended Atom = 0x42307
Onerror Atom = 0x42a07
Onfocus Atom = 0x43107
Onhashchange Atom = 0x43d0c
Oninput Atom = 0x44907
Oninvalid Atom = 0x45509
Onkeydown Atom = 0x45e09
Onkeypress Atom = 0x46b0a
Onkeyup Atom = 0x48007
Onlanguagechange Atom = 0x48d10
Onload Atom = 0x49d06
Onloadeddata Atom = 0x49d0c
Onloadedmetadata Atom = 0x4b010
Onloadend Atom = 0x4c609
Onloadstart Atom = 0x4cf0b
Onmessage Atom = 0x4da09
Onmessageerror Atom = 0x4da0e
Onmousedown Atom = 0x4e80b
Onmouseenter Atom = 0x4f30c
Onmouseleave Atom = 0x4ff0c
Onmousemove Atom = 0x50b0b
Onmouseout Atom = 0x5160a
Onmouseover Atom = 0x5230b
Onmouseup Atom = 0x52e09
Onmousewheel Atom = 0x53c0c
Onoffline Atom = 0x54809
Ononline Atom = 0x55108
Onpagehide Atom = 0x5590a
Onpageshow Atom = 0x5730a
Onpaste Atom = 0x57f07
Onpause Atom = 0x59a07
Onplay Atom = 0x5a406
Onplaying Atom = 0x5a409
Onpopstate Atom = 0x5ad0a
Onprogress Atom = 0x5b70a
Onratechange Atom = 0x5cc0c
Onrejectionhandled Atom = 0x5d812
Onreset Atom = 0x5ea07
Onresize Atom = 0x5f108
Onscroll Atom = 0x60008
Onsecuritypolicyviolation Atom = 0x60819
Onseeked Atom = 0x62908
Onseeking Atom = 0x63109
Onselect Atom = 0x63a08
Onshow Atom = 0x64406
Onsort Atom = 0x64f06
Onstalled Atom = 0x65909
Onstorage Atom = 0x66209
Onsubmit Atom = 0x66b08
Onsuspend Atom = 0x67b09
Ontimeupdate Atom = 0x400c
Ontoggle Atom = 0x68408
Onunhandledrejection Atom = 0x68c14
Onunload Atom = 0x6ab08
Onvolumechange Atom = 0x6b30e
Onwaiting Atom = 0x6c109
Onwheel Atom = 0x6ca07
Open Atom = 0x1a304
Optgroup Atom = 0x5f08
Optimum Atom = 0x6d107
Option Atom = 0x6e306
Output Atom = 0x51d06
P Atom = 0xc01
Param Atom = 0xc05
Pattern Atom = 0x6607
Picture Atom = 0x7b07
Ping Atom = 0xef04
Placeholder Atom = 0x1310b
Plaintext Atom = 0x1b209
Playsinline Atom = 0x1400b
Poster Atom = 0x2cf06
Pre Atom = 0x47003
Preload Atom = 0x48607
Progress Atom = 0x5b908
Prompt Atom = 0x53606
Public Atom = 0x58606
Q Atom = 0xcf01
Radiogroup Atom = 0x30a
Rb Atom = 0x3a02
Readonly Atom = 0x35708
Referrerpolicy Atom = 0x3d10e
Rel Atom = 0x48703
Required Atom = 0x24c08
Reversed Atom = 0x8008
Rows Atom = 0x9c04
Rowspan Atom = 0x9c07
Rp Atom = 0x23c02
Rt Atom = 0x19a02
Rtc Atom = 0x19a03
Ruby Atom = 0xfb04
S Atom = 0x2501
Samp Atom = 0x7804
Sandbox Atom = 0x12907
Scope Atom = 0x67505
Scoped Atom = 0x67506
Script Atom = 0x21806
Seamless Atom = 0x37108
Section Atom = 0x56807
Select Atom = 0x63c06
Selected Atom = 0x63c08
Shape Atom = 0x1e505
Size Atom = 0x5f504
Sizes Atom = 0x5f505
Slot Atom = 0x1ef04
Small Atom = 0x20605
Sortable Atom = 0x65108
Sorted Atom = 0x33706
Source Atom = 0x37806
Spacer Atom = 0x43706
Span Atom = 0x9f04
Spellcheck Atom = 0x4740a
Src Atom = 0x5c003
Srcdoc Atom = 0x5c006
Srclang Atom = 0x5f907
Srcset Atom = 0x6f906
Start Atom = 0x3fa05
Step Atom = 0x58304
Strike Atom = 0xd206
Strong Atom = 0x6dd06
Style Atom = 0x6ff05
Sub Atom = 0x66d03
Summary Atom = 0x70407
Sup Atom = 0x70b03
Svg Atom = 0x70e03
System Atom = 0x71106
Tabindex Atom = 0x4be08
Table Atom = 0x59505
Target Atom = 0x2c406
Tbody Atom = 0x2705
Td Atom = 0x9202
Template Atom = 0x71408
Textarea Atom = 0x35208
Tfoot Atom = 0xf505
Th Atom = 0x15602
Thead Atom = 0x33005
Time Atom = 0x4204
Title Atom = 0x11005
Tr Atom = 0xcc02
Track Atom = 0x1ba05
Translate Atom = 0x1f209
Tt Atom = 0x6802
Type Atom = 0xd904
Typemustmatch Atom = 0x2900d
U Atom = 0xb01
Ul Atom = 0xa702
Updateviacache Atom = 0x460e
Usemap Atom = 0x59e06
Value Atom = 0x1505
Var Atom = 0x16d03
Video Atom = 0x2f105
Wbr Atom = 0x57c03
Width Atom = 0x64905
Workertype Atom = 0x71c0a
Wrap Atom = 0x72604
Xmp Atom = 0x12f03
)
const hash0 = 0x81cdf10e
const maxAtomLen = 25
var table = [1 << 9]Atom{
0x1: 0xe60a, // mediagroup
0x2: 0x2e404, // lang
0x4: 0x2c09, // accesskey
0x5: 0x8b08, // frameset
0x7: 0x63a08, // onselect
0x8: 0x71106, // system
0xa: 0x64905, // width
0xc: 0x2890b, // formenctype
0xd: 0x13702, // ol
0xe: 0x3970b, // oncuechange
0x10: 0x14b03, // bdo
0x11: 0x11505, // audio
0x12: 0x17a09, // draggable
0x14: 0x2f105, // video
0x15: 0x2b102, // mn
0x16: 0x38704, // menu
0x17: 0x2cf06, // poster
0x19: 0xf606, // footer
0x1a: 0x2a806, // method
0x1b: 0x2b808, // datetime
0x1c: 0x19507, // onabort
0x1d: 0x460e, // updateviacache
0x1e: 0xff05, // async
0x1f: 0x49d06, // onload
0x21: 0x11908, // oncancel
0x22: 0x62908, // onseeked
0x23: 0x30205, // image
0x24: 0x5d812, // onrejectionhandled
0x26: 0x17404, // link
0x27: 0x51d06, // output
0x28: 0x33104, // head
0x29: 0x4ff0c, // onmouseleave
0x2a: 0x57f07, // onpaste
0x2b: 0x5a409, // onplaying
0x2c: 0x1c407, // colspan
0x2f: 0x1bf05, // color
0x30: 0x5f504, // size
0x31: 0x2e80a, // http-equiv
0x33: 0x601, // i
0x34: 0x5590a, // onpagehide
0x35: 0x68c14, // onunhandledrejection
0x37: 0x42a07, // onerror
0x3a: 0x3b08, // basefont
0x3f: 0x1303, // nav
0x40: 0x17704, // kind
0x41: 0x35708, // readonly
0x42: 0x30806, // mglyph
0x44: 0xb202, // li
0x46: 0x2d506, // hidden
0x47: 0x70e03, // svg
0x48: 0x58304, // step
0x49: 0x23f09, // integrity
0x4a: 0x58606, // public
0x4c: 0x1ab03, // col
0x4d: 0x1870a, // blockquote
0x4e: 0x34f02, // h5
0x50: 0x5b908, // progress
0x51: 0x5f505, // sizes
0x52: 0x34502, // h4
0x56: 0x33005, // thead
0x57: 0xd607, // keytype
0x58: 0x5b70a, // onprogress
0x59: 0x44b09, // inputmode
0x5a: 0x3b109, // ondragend
0x5d: 0x3a205, // oncut
0x5e: 0x43706, // spacer
0x5f: 0x1ab08, // colgroup
0x62: 0x16502, // is
0x65: 0x3c02, // as
0x66: 0x54809, // onoffline
0x67: 0x33706, // sorted
0x69: 0x48d10, // onlanguagechange
0x6c: 0x43d0c, // onhashchange
0x6d: 0x9604, // name
0x6e: 0xf505, // tfoot
0x6f: 0x56104, // desc
0x70: 0x33d03, // max
0x72: 0x1ea06, // coords
0x73: 0x30d02, // h3
0x74: 0x6e70e, // onbeforeunload
0x75: 0x9c04, // rows
0x76: 0x63c06, // select
0x77: 0x9805, // meter
0x78: 0x38b06, // itemid
0x79: 0x53c0c, // onmousewheel
0x7a: 0x5c006, // srcdoc
0x7d: 0x1ba05, // track
0x7f: 0x31f08, // itemtype
0x82: 0xa402, // mo
0x83: 0x41b08, // onchange
0x84: 0x33107, // headers
0x85: 0x5cc0c, // onratechange
0x86: 0x60819, // onsecuritypolicyviolation
0x88: 0x4a508, // datalist
0x89: 0x4e80b, // onmousedown
0x8a: 0x1ef04, // slot
0x8b: 0x4b010, // onloadedmetadata
0x8c: 0x1a06, // accept
0x8d: 0x26806, // object
0x91: 0x6b30e, // onvolumechange
0x92: 0x2107, // charset
0x93: 0x27613, // onautocompleteerror
0x94: 0xc113, // allowpaymentrequest
0x95: 0x2804, // body
0x96: 0x10a07, // default
0x97: 0x63c08, // selected
0x98: 0x21e04, // face
0x99: 0x1e505, // shape
0x9b: 0x68408, // ontoggle
0x9e: 0x64b02, // dt
0x9f: 0xb604, // mark
0xa1: 0xb01, // u
0xa4: 0x6ab08, // onunload
0xa5: 0x5d04, // loop
0xa6: 0x16408, // disabled
0xaa: 0x42307, // onended
0xab: 0xb00a, // malignmark
0xad: 0x67b09, // onsuspend
0xae: 0x35105, // mtext
0xaf: 0x64f06, // onsort
0xb0: 0x19d08, // itemprop
0xb3: 0x67109, // itemscope
0xb4: 0x17305, // blink
0xb6: 0x3b106, // ondrag
0xb7: 0xa702, // ul
0xb8: 0x26e04, // form
0xb9: 0x12907, // sandbox
0xba: 0x8b05, // frame
0xbb: 0x1505, // value
0xbc: 0x66209, // onstorage
0xbf: 0xaa07, // acronym
0xc0: 0x19a02, // rt
0xc2: 0x202, // br
0xc3: 0x22608, // fieldset
0xc4: 0x2900d, // typemustmatch
0xc5: 0xa208, // nomodule
0xc6: 0x6c07, // noembed
0xc7: 0x69e0d, // onbeforeprint
0xc8: 0x19106, // button
0xc9: 0x2f507, // onclick
0xca: 0x70407, // summary
0xcd: 0xfb04, // ruby
0xce: 0x56405, // class
0xcf: 0x3f40b, // ondragstart
0xd0: 0x23107, // caption
0xd4: 0xdd0e, // allowusermedia
0xd5: 0x4cf0b, // onloadstart
0xd9: 0x16b03, // div
0xda: 0x4a904, // list
0xdb: 0x32e04, // math
0xdc: 0x44b05, // input
0xdf: 0x3ea0a, // ondragover
0xe0: 0x2de02, // h2
0xe2: 0x1b209, // plaintext
0xe4: 0x4f30c, // onmouseenter
0xe7: 0x47907, // checked
0xe8: 0x47003, // pre
0xea: 0x35f08, // multiple
0xeb: 0xba03, // bdi
0xec: 0x33d09, // maxlength
0xed: 0xcf01, // q
0xee: 0x61f0a, // onauxclick
0xf0: 0x57c03, // wbr
0xf2: 0x3b04, // base
0xf3: 0x6e306, // option
0xf5: 0x41310, // ondurationchange
0xf7: 0x8908, // noframes
0xf9: 0x40508, // dropzone
0xfb: 0x67505, // scope
0xfc: 0x8008, // reversed
0xfd: 0x3ba0b, // ondragenter
0xfe: 0x3fa05, // start
0xff: 0x12f03, // xmp
0x100: 0x5f907, // srclang
0x101: 0x30703, // img
0x104: 0x101, // b
0x105: 0x25403, // for
0x106: 0x10705, // aside
0x107: 0x44907, // oninput
0x108: 0x35604, // area
0x109: 0x2a40a, // formmethod
0x10a: 0x72604, // wrap
0x10c: 0x23c02, // rp
0x10d: 0x46b0a, // onkeypress
0x10e: 0x6802, // tt
0x110: 0x34702, // mi
0x111: 0x36705, // muted
0x112: 0xf303, // alt
0x113: 0x5c504, // code
0x114: 0x6e02, // em
0x115: 0x3c50a, // ondragexit
0x117: 0x9f04, // span
0x119: 0x6d708, // manifest
0x11a: 0x38708, // menuitem
0x11b: 0x58b07, // content
0x11d: 0x6c109, // onwaiting
0x11f: 0x4c609, // onloadend
0x121: 0x37e0d, // oncontextmenu
0x123: 0x56d06, // onblur
0x124: 0x3fc07, // article
0x125: 0x9303, // dir
0x126: 0xef04, // ping
0x127: 0x24c08, // required
0x128: 0x45509, // oninvalid
0x129: 0xb105, // align
0x12b: 0x58a04, // icon
0x12c: 0x64d02, // h6
0x12d: 0x1c404, // cols
0x12e: 0x22e0a, // figcaption
0x12f: 0x45e09, // onkeydown
0x130: 0x66b08, // onsubmit
0x131: 0x14d09, // oncanplay
0x132: 0x70b03, // sup
0x133: 0xc01, // p
0x135: 0x40a09, // onemptied
0x136: 0x39106, // oncopy
0x137: 0x19c04, // cite
0x138: 0x3a70a, // ondblclick
0x13a: 0x50b0b, // onmousemove
0x13c: 0x66d03, // sub
0x13d: 0x48703, // rel
0x13e: 0x5f08, // optgroup
0x142: 0x9c07, // rowspan
0x143: 0x37806, // source
0x144: 0x21608, // noscript
0x145: 0x1a304, // open
0x146: 0x20403, // ins
0x147: 0x2540d, // foreignObject
0x148: 0x5ad0a, // onpopstate
0x14a: 0x28d07, // enctype
0x14b: 0x2760e, // onautocomplete
0x14c: 0x35208, // textarea
0x14e: 0x2780c, // autocomplete
0x14f: 0x15702, // hr
0x150: 0x1de08, // controls
0x151: 0x10902, // id
0x153: 0x2360c, // onafterprint
0x155: 0x2610d, // foreignobject
0x156: 0x32707, // marquee
0x157: 0x59a07, // onpause
0x158: 0x5e602, // dl
0x159: 0x5206, // height
0x15a: 0x34703, // min
0x15b: 0x9307, // dirname
0x15c: 0x1f209, // translate
0x15d: 0x5604, // html
0x15e: 0x34709, // minlength
0x15f: 0x48607, // preload
0x160: 0x71408, // template
0x161: 0x3df0b, // ondragleave
0x162: 0x3a02, // rb
0x164: 0x5c003, // src
0x165: 0x6dd06, // strong
0x167: 0x7804, // samp
0x168: 0x6f307, // address
0x169: 0x55108, // ononline
0x16b: 0x1310b, // placeholder
0x16c: 0x2c406, // target
0x16d: 0x20605, // small
0x16e: 0x6ca07, // onwheel
0x16f: 0x1c90a, // annotation
0x170: 0x4740a, // spellcheck
0x171: 0x7207, // details
0x172: 0x10306, // canvas
0x173: 0x12109, // autofocus
0x174: 0xc05, // param
0x176: 0x46308, // download
0x177: 0x45203, // del
0x178: 0x36c07, // onclose
0x179: 0xb903, // kbd
0x17a: 0x31906, // applet
0x17b: 0x2e004, // href
0x17c: 0x5f108, // onresize
0x17e: 0x49d0c, // onloadeddata
0x180: 0xcc02, // tr
0x181: 0x2c00a, // formtarget
0x182: 0x11005, // title
0x183: 0x6ff05, // style
0x184: 0xd206, // strike
0x185: 0x59e06, // usemap
0x186: 0x2fc06, // iframe
0x187: 0x1004, // main
0x189: 0x7b07, // picture
0x18c: 0x31605, // ismap
0x18e: 0x4a504, // data
0x18f: 0x5905, // label
0x191: 0x3d10e, // referrerpolicy
0x192: 0x15602, // th
0x194: 0x53606, // prompt
0x195: 0x56807, // section
0x197: 0x6d107, // optimum
0x198: 0x2db04, // high
0x199: 0x15c02, // h1
0x19a: 0x65909, // onstalled
0x19b: 0x16d03, // var
0x19c: 0x4204, // time
0x19e: 0x67402, // ms
0x19f: 0x33106, // header
0x1a0: 0x4da09, // onmessage
0x1a1: 0x1a605, // nonce
0x1a2: 0x26e0a, // formaction
0x1a3: 0x22006, // center
0x1a4: 0x3704, // nobr
0x1a5: 0x59505, // table
0x1a6: 0x4a907, // listing
0x1a7: 0x18106, // legend
0x1a9: 0x29b09, // challenge
0x1aa: 0x24806, // figure
0x1ab: 0xe605, // media
0x1ae: 0xd904, // type
0x1af: 0x3f04, // font
0x1b0: 0x4da0e, // onmessageerror
0x1b1: 0x37108, // seamless
0x1b2: 0x8703, // dfn
0x1b3: 0x5c705, // defer
0x1b4: 0xc303, // low
0x1b5: 0x19a03, // rtc
0x1b6: 0x5230b, // onmouseover
0x1b7: 0x2b20a, // novalidate
0x1b8: 0x71c0a, // workertype
0x1ba: 0x3cd07, // itemref
0x1bd: 0x1, // a
0x1be: 0x31803, // map
0x1bf: 0x400c, // ontimeupdate
0x1c0: 0x15e07, // bgsound
0x1c1: 0x3206, // keygen
0x1c2: 0x2705, // tbody
0x1c5: 0x64406, // onshow
0x1c7: 0x2501, // s
0x1c8: 0x6607, // pattern
0x1cc: 0x14d10, // oncanplaythrough
0x1ce: 0x2d702, // dd
0x1cf: 0x6f906, // srcset
0x1d0: 0x17003, // big
0x1d2: 0x65108, // sortable
0x1d3: 0x48007, // onkeyup
0x1d5: 0x5a406, // onplay
0x1d7: 0x4b804, // meta
0x1d8: 0x40306, // ondrop
0x1da: 0x60008, // onscroll
0x1db: 0x1fb0b, // crossorigin
0x1dc: 0x5730a, // onpageshow
0x1dd: 0x4, // abbr
0x1de: 0x9202, // td
0x1df: 0x58b0f, // contenteditable
0x1e0: 0x27206, // action
0x1e1: 0x1400b, // playsinline
0x1e2: 0x43107, // onfocus
0x1e3: 0x2e008, // hreflang
0x1e5: 0x5160a, // onmouseout
0x1e6: 0x5ea07, // onreset
0x1e7: 0x13c08, // autoplay
0x1e8: 0x63109, // onseeking
0x1ea: 0x67506, // scoped
0x1ec: 0x30a, // radiogroup
0x1ee: 0x3800b, // contextmenu
0x1ef: 0x52e09, // onmouseup
0x1f1: 0x2ca06, // hgroup
0x1f2: 0x2080f, // allowfullscreen
0x1f3: 0x4be08, // tabindex
0x1f6: 0x30f07, // isindex
0x1f7: 0x1a0e, // accept-charset
0x1f8: 0x2ae0e, // formnovalidate
0x1fb: 0x1c90e, // annotation-xml
0x1fc: 0x6e05, // embed
0x1fd: 0x21806, // script
0x1fe: 0xbb06, // dialog
0x1ff: 0x1d707, // command
}
const atomText = "abbradiogrouparamainavalueaccept-charsetbodyaccesskeygenobrb" +
"asefontimeupdateviacacheightmlabelooptgroupatternoembedetail" +
"sampictureversedfnoframesetdirnameterowspanomoduleacronymali" +
"gnmarkbdialogallowpaymentrequestrikeytypeallowusermediagroup" +
"ingaltfooterubyasyncanvasidefaultitleaudioncancelautofocusan" +
"dboxmplaceholderautoplaysinlinebdoncanplaythrough1bgsoundisa" +
"bledivarbigblinkindraggablegendblockquotebuttonabortcitempro" +
"penoncecolgrouplaintextrackcolorcolspannotation-xmlcommandco" +
"ntrolshapecoordslotranslatecrossoriginsmallowfullscreenoscri" +
"ptfacenterfieldsetfigcaptionafterprintegrityfigurequiredfore" +
"ignObjectforeignobjectformactionautocompleteerrorformenctype" +
"mustmatchallengeformmethodformnovalidatetimeformtargethgroup" +
"osterhiddenhigh2hreflanghttp-equivideonclickiframeimageimgly" +
"ph3isindexismappletitemtypemarqueematheadersortedmaxlength4m" +
"inlength5mtextareadonlymultiplemutedoncloseamlessourceoncont" +
"extmenuitemidoncopyoncuechangeoncutondblclickondragendondrag" +
"enterondragexitemreferrerpolicyondragleaveondragoverondragst" +
"articleondropzonemptiedondurationchangeonendedonerroronfocus" +
"paceronhashchangeoninputmodeloninvalidonkeydownloadonkeypres" +
"spellcheckedonkeyupreloadonlanguagechangeonloadeddatalisting" +
"onloadedmetadatabindexonloadendonloadstartonmessageerroronmo" +
"usedownonmouseenteronmouseleaveonmousemoveonmouseoutputonmou" +
"seoveronmouseupromptonmousewheelonofflineononlineonpagehides" +
"classectionbluronpageshowbronpastepublicontenteditableonpaus" +
"emaponplayingonpopstateonprogressrcdocodeferonratechangeonre" +
"jectionhandledonresetonresizesrclangonscrollonsecuritypolicy" +
"violationauxclickonseekedonseekingonselectedonshowidth6onsor" +
"tableonstalledonstorageonsubmitemscopedonsuspendontoggleonun" +
"handledrejectionbeforeprintonunloadonvolumechangeonwaitingon" +
"wheeloptimumanifestrongoptionbeforeunloaddressrcsetstylesumm" +
"arysupsvgsystemplateworkertypewrap"

@ -0,0 +1,257 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package charset provides common text encodings for HTML documents.
//
// The mapping from encoding labels to encodings is defined at
// https://encoding.spec.whatwg.org/.
package charset // import "golang.org/x/net/html/charset"
import (
"bytes"
"fmt"
"io"
"mime"
"strings"
"unicode/utf8"
"golang.org/x/net/html"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/charmap"
"golang.org/x/text/encoding/htmlindex"
"golang.org/x/text/transform"
)
// Lookup returns the encoding with the specified label, and its canonical
// name. It returns nil and the empty string if label is not one of the
// standard encodings for HTML. Matching is case-insensitive and ignores
// leading and trailing whitespace. Encoders will use HTML escape sequences for
// runes that are not supported by the character set.
func Lookup(label string) (e encoding.Encoding, name string) {
e, err := htmlindex.Get(label)
if err != nil {
return nil, ""
}
name, _ = htmlindex.Name(e)
return &htmlEncoding{e}, name
}
type htmlEncoding struct{ encoding.Encoding }
func (h *htmlEncoding) NewEncoder() *encoding.Encoder {
// HTML requires a non-terminating legacy encoder. We use HTML escapes to
// substitute unsupported code points.
return encoding.HTMLEscapeUnsupported(h.Encoding.NewEncoder())
}
// DetermineEncoding determines the encoding of an HTML document by examining
// up to the first 1024 bytes of content and the declared Content-Type.
//
// See http://www.whatwg.org/specs/web-apps/current-work/multipage/parsing.html#determining-the-character-encoding
func DetermineEncoding(content []byte, contentType string) (e encoding.Encoding, name string, certain bool) {
if len(content) > 1024 {
content = content[:1024]
}
for _, b := range boms {
if bytes.HasPrefix(content, b.bom) {
e, name = Lookup(b.enc)
return e, name, true
}
}
if _, params, err := mime.ParseMediaType(contentType); err == nil {
if cs, ok := params["charset"]; ok {
if e, name = Lookup(cs); e != nil {
return e, name, true
}
}
}
if len(content) > 0 {
e, name = prescan(content)
if e != nil {
return e, name, false
}
}
// Try to detect UTF-8.
// First eliminate any partial rune at the end.
for i := len(content) - 1; i >= 0 && i > len(content)-4; i-- {
b := content[i]
if b < 0x80 {
break
}
if utf8.RuneStart(b) {
content = content[:i]
break
}
}
hasHighBit := false
for _, c := range content {
if c >= 0x80 {
hasHighBit = true
break
}
}
if hasHighBit && utf8.Valid(content) {
return encoding.Nop, "utf-8", false
}
// TODO: change default depending on user's locale?
return charmap.Windows1252, "windows-1252", false
}
// NewReader returns an io.Reader that converts the content of r to UTF-8.
// It calls DetermineEncoding to find out what r's encoding is.
func NewReader(r io.Reader, contentType string) (io.Reader, error) {
preview := make([]byte, 1024)
n, err := io.ReadFull(r, preview)
switch {
case err == io.ErrUnexpectedEOF:
preview = preview[:n]
r = bytes.NewReader(preview)
case err != nil:
return nil, err
default:
r = io.MultiReader(bytes.NewReader(preview), r)
}
if e, _, _ := DetermineEncoding(preview, contentType); e != encoding.Nop {
r = transform.NewReader(r, e.NewDecoder())
}
return r, nil
}
// NewReaderLabel returns a reader that converts from the specified charset to
// UTF-8. It uses Lookup to find the encoding that corresponds to label, and
// returns an error if Lookup returns nil. It is suitable for use as
// encoding/xml.Decoder's CharsetReader function.
func NewReaderLabel(label string, input io.Reader) (io.Reader, error) {
e, _ := Lookup(label)
if e == nil {
return nil, fmt.Errorf("unsupported charset: %q", label)
}
return transform.NewReader(input, e.NewDecoder()), nil
}
func prescan(content []byte) (e encoding.Encoding, name string) {
z := html.NewTokenizer(bytes.NewReader(content))
for {
switch z.Next() {
case html.ErrorToken:
return nil, ""
case html.StartTagToken, html.SelfClosingTagToken:
tagName, hasAttr := z.TagName()
if !bytes.Equal(tagName, []byte("meta")) {
continue
}
attrList := make(map[string]bool)
gotPragma := false
const (
dontKnow = iota
doNeedPragma
doNotNeedPragma
)
needPragma := dontKnow
name = ""
e = nil
for hasAttr {
var key, val []byte
key, val, hasAttr = z.TagAttr()
ks := string(key)
if attrList[ks] {
continue
}
attrList[ks] = true
for i, c := range val {
if 'A' <= c && c <= 'Z' {
val[i] = c + 0x20
}
}
switch ks {
case "http-equiv":
if bytes.Equal(val, []byte("content-type")) {
gotPragma = true
}
case "content":
if e == nil {
name = fromMetaElement(string(val))
if name != "" {
e, name = Lookup(name)
if e != nil {
needPragma = doNeedPragma
}
}
}
case "charset":
e, name = Lookup(string(val))
needPragma = doNotNeedPragma
}
}
if needPragma == dontKnow || needPragma == doNeedPragma && !gotPragma {
continue
}
if strings.HasPrefix(name, "utf-16") {
name = "utf-8"
e = encoding.Nop
}
if e != nil {
return e, name
}
}
}
}
func fromMetaElement(s string) string {
for s != "" {
csLoc := strings.Index(s, "charset")
if csLoc == -1 {
return ""
}
s = s[csLoc+len("charset"):]
s = strings.TrimLeft(s, " \t\n\f\r")
if !strings.HasPrefix(s, "=") {
continue
}
s = s[1:]
s = strings.TrimLeft(s, " \t\n\f\r")
if s == "" {
return ""
}
if q := s[0]; q == '"' || q == '\'' {
s = s[1:]
closeQuote := strings.IndexRune(s, rune(q))
if closeQuote == -1 {
return ""
}
return s[:closeQuote]
}
end := strings.IndexAny(s, "; \t\n\f\r")
if end == -1 {
end = len(s)
}
return s[:end]
}
return ""
}
var boms = []struct {
bom []byte
enc string
}{
{[]byte{0xfe, 0xff}, "utf-16be"},
{[]byte{0xff, 0xfe}, "utf-16le"},
{[]byte{0xef, 0xbb, 0xbf}, "utf-8"},
}

@ -0,0 +1,111 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
// Section 12.2.4.2 of the HTML5 specification says "The following elements
// have varying levels of special parsing rules".
// https://html.spec.whatwg.org/multipage/syntax.html#the-stack-of-open-elements
var isSpecialElementMap = map[string]bool{
"address": true,
"applet": true,
"area": true,
"article": true,
"aside": true,
"base": true,
"basefont": true,
"bgsound": true,
"blockquote": true,
"body": true,
"br": true,
"button": true,
"caption": true,
"center": true,
"col": true,
"colgroup": true,
"dd": true,
"details": true,
"dir": true,
"div": true,
"dl": true,
"dt": true,
"embed": true,
"fieldset": true,
"figcaption": true,
"figure": true,
"footer": true,
"form": true,
"frame": true,
"frameset": true,
"h1": true,
"h2": true,
"h3": true,
"h4": true,
"h5": true,
"h6": true,
"head": true,
"header": true,
"hgroup": true,
"hr": true,
"html": true,
"iframe": true,
"img": true,
"input": true,
"keygen": true, // "keygen" has been removed from the spec, but are kept here for backwards compatibility.
"li": true,
"link": true,
"listing": true,
"main": true,
"marquee": true,
"menu": true,
"meta": true,
"nav": true,
"noembed": true,
"noframes": true,
"noscript": true,
"object": true,
"ol": true,
"p": true,
"param": true,
"plaintext": true,
"pre": true,
"script": true,
"section": true,
"select": true,
"source": true,
"style": true,
"summary": true,
"table": true,
"tbody": true,
"td": true,
"template": true,
"textarea": true,
"tfoot": true,
"th": true,
"thead": true,
"title": true,
"tr": true,
"track": true,
"ul": true,
"wbr": true,
"xmp": true,
}
func isSpecialElement(element *Node) bool {
switch element.Namespace {
case "", "html":
return isSpecialElementMap[element.Data]
case "math":
switch element.Data {
case "mi", "mo", "mn", "ms", "mtext", "annotation-xml":
return true
}
case "svg":
switch element.Data {
case "foreignObject", "desc", "title":
return true
}
}
return false
}

106
vendor/golang.org/x/net/html/doc.go generated vendored

@ -0,0 +1,106 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package html implements an HTML5-compliant tokenizer and parser.
Tokenization is done by creating a Tokenizer for an io.Reader r. It is the
caller's responsibility to ensure that r provides UTF-8 encoded HTML.
z := html.NewTokenizer(r)
Given a Tokenizer z, the HTML is tokenized by repeatedly calling z.Next(),
which parses the next token and returns its type, or an error:
for {
tt := z.Next()
if tt == html.ErrorToken {
// ...
return ...
}
// Process the current token.
}
There are two APIs for retrieving the current token. The high-level API is to
call Token; the low-level API is to call Text or TagName / TagAttr. Both APIs
allow optionally calling Raw after Next but before Token, Text, TagName, or
TagAttr. In EBNF notation, the valid call sequence per token is:
Next {Raw} [ Token | Text | TagName {TagAttr} ]
Token returns an independent data structure that completely describes a token.
Entities (such as "&lt;") are unescaped, tag names and attribute keys are
lower-cased, and attributes are collected into a []Attribute. For example:
for {
if z.Next() == html.ErrorToken {
// Returning io.EOF indicates success.
return z.Err()
}
emitToken(z.Token())
}
The low-level API performs fewer allocations and copies, but the contents of
the []byte values returned by Text, TagName and TagAttr may change on the next
call to Next. For example, to extract an HTML page's anchor text:
depth := 0
for {
tt := z.Next()
switch tt {
case html.ErrorToken:
return z.Err()
case html.TextToken:
if depth > 0 {
// emitBytes should copy the []byte it receives,
// if it doesn't process it immediately.
emitBytes(z.Text())
}
case html.StartTagToken, html.EndTagToken:
tn, _ := z.TagName()
if len(tn) == 1 && tn[0] == 'a' {
if tt == html.StartTagToken {
depth++
} else {
depth--
}
}
}
}
Parsing is done by calling Parse with an io.Reader, which returns the root of
the parse tree (the document element) as a *Node. It is the caller's
responsibility to ensure that the Reader provides UTF-8 encoded HTML. For
example, to process each anchor node in depth-first order:
doc, err := html.Parse(r)
if err != nil {
// ...
}
var f func(*html.Node)
f = func(n *html.Node) {
if n.Type == html.ElementNode && n.Data == "a" {
// Do something with n...
}
for c := n.FirstChild; c != nil; c = c.NextSibling {
f(c)
}
}
f(doc)
The relevant specifications include:
https://html.spec.whatwg.org/multipage/syntax.html and
https://html.spec.whatwg.org/multipage/syntax.html#tokenization
*/
package html // import "golang.org/x/net/html"
// The tokenization algorithm implemented by this package is not a line-by-line
// transliteration of the relatively verbose state-machine in the WHATWG
// specification. A more direct approach is used instead, where the program
// counter implies the state, such as whether it is tokenizing a tag or a text
// node. Specification compliance is verified by checking expected and actual
// outputs over a test suite rather than aiming for algorithmic fidelity.
// TODO(nigeltao): Does a DOM API belong in this package or a separate one?
// TODO(nigeltao): How does parsing interact with a JavaScript engine?

@ -0,0 +1,156 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"strings"
)
// parseDoctype parses the data from a DoctypeToken into a name,
// public identifier, and system identifier. It returns a Node whose Type
// is DoctypeNode, whose Data is the name, and which has attributes
// named "system" and "public" for the two identifiers if they were present.
// quirks is whether the document should be parsed in "quirks mode".
func parseDoctype(s string) (n *Node, quirks bool) {
n = &Node{Type: DoctypeNode}
// Find the name.
space := strings.IndexAny(s, whitespace)
if space == -1 {
space = len(s)
}
n.Data = s[:space]
// The comparison to "html" is case-sensitive.
if n.Data != "html" {
quirks = true
}
n.Data = strings.ToLower(n.Data)
s = strings.TrimLeft(s[space:], whitespace)
if len(s) < 6 {
// It can't start with "PUBLIC" or "SYSTEM".
// Ignore the rest of the string.
return n, quirks || s != ""
}
key := strings.ToLower(s[:6])
s = s[6:]
for key == "public" || key == "system" {
s = strings.TrimLeft(s, whitespace)
if s == "" {
break
}
quote := s[0]
if quote != '"' && quote != '\'' {
break
}
s = s[1:]
q := strings.IndexRune(s, rune(quote))
var id string
if q == -1 {
id = s
s = ""
} else {
id = s[:q]
s = s[q+1:]
}
n.Attr = append(n.Attr, Attribute{Key: key, Val: id})
if key == "public" {
key = "system"
} else {
key = ""
}
}
if key != "" || s != "" {
quirks = true
} else if len(n.Attr) > 0 {
if n.Attr[0].Key == "public" {
public := strings.ToLower(n.Attr[0].Val)
switch public {
case "-//w3o//dtd w3 html strict 3.0//en//", "-/w3d/dtd html 4.0 transitional/en", "html":
quirks = true
default:
for _, q := range quirkyIDs {
if strings.HasPrefix(public, q) {
quirks = true
break
}
}
}
// The following two public IDs only cause quirks mode if there is no system ID.
if len(n.Attr) == 1 && (strings.HasPrefix(public, "-//w3c//dtd html 4.01 frameset//") ||
strings.HasPrefix(public, "-//w3c//dtd html 4.01 transitional//")) {
quirks = true
}
}
if lastAttr := n.Attr[len(n.Attr)-1]; lastAttr.Key == "system" &&
strings.ToLower(lastAttr.Val) == "http://www.ibm.com/data/dtd/v11/ibmxhtml1-transitional.dtd" {
quirks = true
}
}
return n, quirks
}
// quirkyIDs is a list of public doctype identifiers that cause a document
// to be interpreted in quirks mode. The identifiers should be in lower case.
var quirkyIDs = []string{
"+//silmaril//dtd html pro v0r11 19970101//",
"-//advasoft ltd//dtd html 3.0 aswedit + extensions//",
"-//as//dtd html 3.0 aswedit + extensions//",
"-//ietf//dtd html 2.0 level 1//",
"-//ietf//dtd html 2.0 level 2//",
"-//ietf//dtd html 2.0 strict level 1//",
"-//ietf//dtd html 2.0 strict level 2//",
"-//ietf//dtd html 2.0 strict//",
"-//ietf//dtd html 2.0//",
"-//ietf//dtd html 2.1e//",
"-//ietf//dtd html 3.0//",
"-//ietf//dtd html 3.2 final//",
"-//ietf//dtd html 3.2//",
"-//ietf//dtd html 3//",
"-//ietf//dtd html level 0//",
"-//ietf//dtd html level 1//",
"-//ietf//dtd html level 2//",
"-//ietf//dtd html level 3//",
"-//ietf//dtd html strict level 0//",
"-//ietf//dtd html strict level 1//",
"-//ietf//dtd html strict level 2//",
"-//ietf//dtd html strict level 3//",
"-//ietf//dtd html strict//",
"-//ietf//dtd html//",
"-//metrius//dtd metrius presentational//",
"-//microsoft//dtd internet explorer 2.0 html strict//",
"-//microsoft//dtd internet explorer 2.0 html//",
"-//microsoft//dtd internet explorer 2.0 tables//",
"-//microsoft//dtd internet explorer 3.0 html strict//",
"-//microsoft//dtd internet explorer 3.0 html//",
"-//microsoft//dtd internet explorer 3.0 tables//",
"-//netscape comm. corp.//dtd html//",
"-//netscape comm. corp.//dtd strict html//",
"-//o'reilly and associates//dtd html 2.0//",
"-//o'reilly and associates//dtd html extended 1.0//",
"-//o'reilly and associates//dtd html extended relaxed 1.0//",
"-//softquad software//dtd hotmetal pro 6.0::19990601::extensions to html 4.0//",
"-//softquad//dtd hotmetal pro 4.0::19971010::extensions to html 4.0//",
"-//spyglass//dtd html 2.0 extended//",
"-//sq//dtd html 2.0 hotmetal + extensions//",
"-//sun microsystems corp.//dtd hotjava html//",
"-//sun microsystems corp.//dtd hotjava strict html//",
"-//w3c//dtd html 3 1995-03-24//",
"-//w3c//dtd html 3.2 draft//",
"-//w3c//dtd html 3.2 final//",
"-//w3c//dtd html 3.2//",
"-//w3c//dtd html 3.2s draft//",
"-//w3c//dtd html 4.0 frameset//",
"-//w3c//dtd html 4.0 transitional//",
"-//w3c//dtd html experimental 19960712//",
"-//w3c//dtd html experimental 970421//",
"-//w3c//dtd w3 html//",
"-//w3o//dtd w3 html 3.0//",
"-//webtechs//dtd mozilla html 2.0//",
"-//webtechs//dtd mozilla html//",
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,258 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"bytes"
"strings"
"unicode/utf8"
)
// These replacements permit compatibility with old numeric entities that
// assumed Windows-1252 encoding.
// https://html.spec.whatwg.org/multipage/syntax.html#consume-a-character-reference
var replacementTable = [...]rune{
'\u20AC', // First entry is what 0x80 should be replaced with.
'\u0081',
'\u201A',
'\u0192',
'\u201E',
'\u2026',
'\u2020',
'\u2021',
'\u02C6',
'\u2030',
'\u0160',
'\u2039',
'\u0152',
'\u008D',
'\u017D',
'\u008F',
'\u0090',
'\u2018',
'\u2019',
'\u201C',
'\u201D',
'\u2022',
'\u2013',
'\u2014',
'\u02DC',
'\u2122',
'\u0161',
'\u203A',
'\u0153',
'\u009D',
'\u017E',
'\u0178', // Last entry is 0x9F.
// 0x00->'\uFFFD' is handled programmatically.
// 0x0D->'\u000D' is a no-op.
}
// unescapeEntity reads an entity like "&lt;" from b[src:] and writes the
// corresponding "<" to b[dst:], returning the incremented dst and src cursors.
// Precondition: b[src] == '&' && dst <= src.
// attribute should be true if parsing an attribute value.
func unescapeEntity(b []byte, dst, src int, attribute bool) (dst1, src1 int) {
// https://html.spec.whatwg.org/multipage/syntax.html#consume-a-character-reference
// i starts at 1 because we already know that s[0] == '&'.
i, s := 1, b[src:]
if len(s) <= 1 {
b[dst] = b[src]
return dst + 1, src + 1
}
if s[i] == '#' {
if len(s) <= 3 { // We need to have at least "&#.".
b[dst] = b[src]
return dst + 1, src + 1
}
i++
c := s[i]
hex := false
if c == 'x' || c == 'X' {
hex = true
i++
}
x := '\x00'
for i < len(s) {
c = s[i]
i++
if hex {
if '0' <= c && c <= '9' {
x = 16*x + rune(c) - '0'
continue
} else if 'a' <= c && c <= 'f' {
x = 16*x + rune(c) - 'a' + 10
continue
} else if 'A' <= c && c <= 'F' {
x = 16*x + rune(c) - 'A' + 10
continue
}
} else if '0' <= c && c <= '9' {
x = 10*x + rune(c) - '0'
continue
}
if c != ';' {
i--
}
break
}
if i <= 3 { // No characters matched.
b[dst] = b[src]
return dst + 1, src + 1
}
if 0x80 <= x && x <= 0x9F {
// Replace characters from Windows-1252 with UTF-8 equivalents.
x = replacementTable[x-0x80]
} else if x == 0 || (0xD800 <= x && x <= 0xDFFF) || x > 0x10FFFF {
// Replace invalid characters with the replacement character.
x = '\uFFFD'
}
return dst + utf8.EncodeRune(b[dst:], x), src + i
}
// Consume the maximum number of characters possible, with the
// consumed characters matching one of the named references.
for i < len(s) {
c := s[i]
i++
// Lower-cased characters are more common in entities, so we check for them first.
if 'a' <= c && c <= 'z' || 'A' <= c && c <= 'Z' || '0' <= c && c <= '9' {
continue
}
if c != ';' {
i--
}
break
}
entityName := string(s[1:i])
if entityName == "" {
// No-op.
} else if attribute && entityName[len(entityName)-1] != ';' && len(s) > i && s[i] == '=' {
// No-op.
} else if x := entity[entityName]; x != 0 {
return dst + utf8.EncodeRune(b[dst:], x), src + i
} else if x := entity2[entityName]; x[0] != 0 {
dst1 := dst + utf8.EncodeRune(b[dst:], x[0])
return dst1 + utf8.EncodeRune(b[dst1:], x[1]), src + i
} else if !attribute {
maxLen := len(entityName) - 1
if maxLen > longestEntityWithoutSemicolon {
maxLen = longestEntityWithoutSemicolon
}
for j := maxLen; j > 1; j-- {
if x := entity[entityName[:j]]; x != 0 {
return dst + utf8.EncodeRune(b[dst:], x), src + j + 1
}
}
}
dst1, src1 = dst+i, src+i
copy(b[dst:dst1], b[src:src1])
return dst1, src1
}
// unescape unescapes b's entities in-place, so that "a&lt;b" becomes "a<b".
// attribute should be true if parsing an attribute value.
func unescape(b []byte, attribute bool) []byte {
for i, c := range b {
if c == '&' {
dst, src := unescapeEntity(b, i, i, attribute)
for src < len(b) {
c := b[src]
if c == '&' {
dst, src = unescapeEntity(b, dst, src, attribute)
} else {
b[dst] = c
dst, src = dst+1, src+1
}
}
return b[0:dst]
}
}
return b
}
// lower lower-cases the A-Z bytes in b in-place, so that "aBc" becomes "abc".
func lower(b []byte) []byte {
for i, c := range b {
if 'A' <= c && c <= 'Z' {
b[i] = c + 'a' - 'A'
}
}
return b
}
const escapedChars = "&'<>\"\r"
func escape(w writer, s string) error {
i := strings.IndexAny(s, escapedChars)
for i != -1 {
if _, err := w.WriteString(s[:i]); err != nil {
return err
}
var esc string
switch s[i] {
case '&':
esc = "&amp;"
case '\'':
// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
esc = "&#39;"
case '<':
esc = "&lt;"
case '>':
esc = "&gt;"
case '"':
// "&#34;" is shorter than "&quot;".
esc = "&#34;"
case '\r':
esc = "&#13;"
default:
panic("unrecognized escape character")
}
s = s[i+1:]
if _, err := w.WriteString(esc); err != nil {
return err
}
i = strings.IndexAny(s, escapedChars)
}
_, err := w.WriteString(s)
return err
}
// EscapeString escapes special characters like "<" to become "&lt;". It
// escapes only five such characters: <, >, &, ' and ".
// UnescapeString(EscapeString(s)) == s always holds, but the converse isn't
// always true.
func EscapeString(s string) string {
if strings.IndexAny(s, escapedChars) == -1 {
return s
}
var buf bytes.Buffer
escape(&buf, s)
return buf.String()
}
// UnescapeString unescapes entities like "&lt;" to become "<". It unescapes a
// larger range of entities than EscapeString escapes. For example, "&aacute;"
// unescapes to "á", as does "&#225;" and "&xE1;".
// UnescapeString(EscapeString(s)) == s always holds, but the converse isn't
// always true.
func UnescapeString(s string) string {
for _, c := range s {
if c == '&' {
return string(unescape([]byte(s), false))
}
}
return s
}

@ -0,0 +1,222 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"strings"
)
func adjustAttributeNames(aa []Attribute, nameMap map[string]string) {
for i := range aa {
if newName, ok := nameMap[aa[i].Key]; ok {
aa[i].Key = newName
}
}
}
func adjustForeignAttributes(aa []Attribute) {
for i, a := range aa {
if a.Key == "" || a.Key[0] != 'x' {
continue
}
switch a.Key {
case "xlink:actuate", "xlink:arcrole", "xlink:href", "xlink:role", "xlink:show",
"xlink:title", "xlink:type", "xml:base", "xml:lang", "xml:space", "xmlns:xlink":
j := strings.Index(a.Key, ":")
aa[i].Namespace = a.Key[:j]
aa[i].Key = a.Key[j+1:]
}
}
}
func htmlIntegrationPoint(n *Node) bool {
if n.Type != ElementNode {
return false
}
switch n.Namespace {
case "math":
if n.Data == "annotation-xml" {
for _, a := range n.Attr {
if a.Key == "encoding" {
val := strings.ToLower(a.Val)
if val == "text/html" || val == "application/xhtml+xml" {
return true
}
}
}
}
case "svg":
switch n.Data {
case "desc", "foreignObject", "title":
return true
}
}
return false
}
func mathMLTextIntegrationPoint(n *Node) bool {
if n.Namespace != "math" {
return false
}
switch n.Data {
case "mi", "mo", "mn", "ms", "mtext":
return true
}
return false
}
// Section 12.2.6.5.
var breakout = map[string]bool{
"b": true,
"big": true,
"blockquote": true,
"body": true,
"br": true,
"center": true,
"code": true,
"dd": true,
"div": true,
"dl": true,
"dt": true,
"em": true,
"embed": true,
"h1": true,
"h2": true,
"h3": true,
"h4": true,
"h5": true,
"h6": true,
"head": true,
"hr": true,
"i": true,
"img": true,
"li": true,
"listing": true,
"menu": true,
"meta": true,
"nobr": true,
"ol": true,
"p": true,
"pre": true,
"ruby": true,
"s": true,
"small": true,
"span": true,
"strong": true,
"strike": true,
"sub": true,
"sup": true,
"table": true,
"tt": true,
"u": true,
"ul": true,
"var": true,
}
// Section 12.2.6.5.
var svgTagNameAdjustments = map[string]string{
"altglyph": "altGlyph",
"altglyphdef": "altGlyphDef",
"altglyphitem": "altGlyphItem",
"animatecolor": "animateColor",
"animatemotion": "animateMotion",
"animatetransform": "animateTransform",
"clippath": "clipPath",
"feblend": "feBlend",
"fecolormatrix": "feColorMatrix",
"fecomponenttransfer": "feComponentTransfer",
"fecomposite": "feComposite",
"feconvolvematrix": "feConvolveMatrix",
"fediffuselighting": "feDiffuseLighting",
"fedisplacementmap": "feDisplacementMap",
"fedistantlight": "feDistantLight",
"feflood": "feFlood",
"fefunca": "feFuncA",
"fefuncb": "feFuncB",
"fefuncg": "feFuncG",
"fefuncr": "feFuncR",
"fegaussianblur": "feGaussianBlur",
"feimage": "feImage",
"femerge": "feMerge",
"femergenode": "feMergeNode",
"femorphology": "feMorphology",
"feoffset": "feOffset",
"fepointlight": "fePointLight",
"fespecularlighting": "feSpecularLighting",
"fespotlight": "feSpotLight",
"fetile": "feTile",
"feturbulence": "feTurbulence",
"foreignobject": "foreignObject",
"glyphref": "glyphRef",
"lineargradient": "linearGradient",
"radialgradient": "radialGradient",
"textpath": "textPath",
}
// Section 12.2.6.1
var mathMLAttributeAdjustments = map[string]string{
"definitionurl": "definitionURL",
}
var svgAttributeAdjustments = map[string]string{
"attributename": "attributeName",
"attributetype": "attributeType",
"basefrequency": "baseFrequency",
"baseprofile": "baseProfile",
"calcmode": "calcMode",
"clippathunits": "clipPathUnits",
"diffuseconstant": "diffuseConstant",
"edgemode": "edgeMode",
"filterunits": "filterUnits",
"glyphref": "glyphRef",
"gradienttransform": "gradientTransform",
"gradientunits": "gradientUnits",
"kernelmatrix": "kernelMatrix",
"kernelunitlength": "kernelUnitLength",
"keypoints": "keyPoints",
"keysplines": "keySplines",
"keytimes": "keyTimes",
"lengthadjust": "lengthAdjust",
"limitingconeangle": "limitingConeAngle",
"markerheight": "markerHeight",
"markerunits": "markerUnits",
"markerwidth": "markerWidth",
"maskcontentunits": "maskContentUnits",
"maskunits": "maskUnits",
"numoctaves": "numOctaves",
"pathlength": "pathLength",
"patterncontentunits": "patternContentUnits",
"patterntransform": "patternTransform",
"patternunits": "patternUnits",
"pointsatx": "pointsAtX",
"pointsaty": "pointsAtY",
"pointsatz": "pointsAtZ",
"preservealpha": "preserveAlpha",
"preserveaspectratio": "preserveAspectRatio",
"primitiveunits": "primitiveUnits",
"refx": "refX",
"refy": "refY",
"repeatcount": "repeatCount",
"repeatdur": "repeatDur",
"requiredextensions": "requiredExtensions",
"requiredfeatures": "requiredFeatures",
"specularconstant": "specularConstant",
"specularexponent": "specularExponent",
"spreadmethod": "spreadMethod",
"startoffset": "startOffset",
"stddeviation": "stdDeviation",
"stitchtiles": "stitchTiles",
"surfacescale": "surfaceScale",
"systemlanguage": "systemLanguage",
"tablevalues": "tableValues",
"targetx": "targetX",
"targety": "targetY",
"textlength": "textLength",
"viewbox": "viewBox",
"viewtarget": "viewTarget",
"xchannelselector": "xChannelSelector",
"ychannelselector": "yChannelSelector",
"zoomandpan": "zoomAndPan",
}

@ -0,0 +1,225 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"golang.org/x/net/html/atom"
)
// A NodeType is the type of a Node.
type NodeType uint32
const (
ErrorNode NodeType = iota
TextNode
DocumentNode
ElementNode
CommentNode
DoctypeNode
// RawNode nodes are not returned by the parser, but can be part of the
// Node tree passed to func Render to insert raw HTML (without escaping).
// If so, this package makes no guarantee that the rendered HTML is secure
// (from e.g. Cross Site Scripting attacks) or well-formed.
RawNode
scopeMarkerNode
)
// Section 12.2.4.3 says "The markers are inserted when entering applet,
// object, marquee, template, td, th, and caption elements, and are used
// to prevent formatting from "leaking" into applet, object, marquee,
// template, td, th, and caption elements".
var scopeMarker = Node{Type: scopeMarkerNode}
// A Node consists of a NodeType and some Data (tag name for element nodes,
// content for text) and are part of a tree of Nodes. Element nodes may also
// have a Namespace and contain a slice of Attributes. Data is unescaped, so
// that it looks like "a<b" rather than "a&lt;b". For element nodes, DataAtom
// is the atom for Data, or zero if Data is not a known tag name.
//
// An empty Namespace implies a "http://www.w3.org/1999/xhtml" namespace.
// Similarly, "math" is short for "http://www.w3.org/1998/Math/MathML", and
// "svg" is short for "http://www.w3.org/2000/svg".
type Node struct {
Parent, FirstChild, LastChild, PrevSibling, NextSibling *Node
Type NodeType
DataAtom atom.Atom
Data string
Namespace string
Attr []Attribute
}
// InsertBefore inserts newChild as a child of n, immediately before oldChild
// in the sequence of n's children. oldChild may be nil, in which case newChild
// is appended to the end of n's children.
//
// It will panic if newChild already has a parent or siblings.
func (n *Node) InsertBefore(newChild, oldChild *Node) {
if newChild.Parent != nil || newChild.PrevSibling != nil || newChild.NextSibling != nil {
panic("html: InsertBefore called for an attached child Node")
}
var prev, next *Node
if oldChild != nil {
prev, next = oldChild.PrevSibling, oldChild
} else {
prev = n.LastChild
}
if prev != nil {
prev.NextSibling = newChild
} else {
n.FirstChild = newChild
}
if next != nil {
next.PrevSibling = newChild
} else {
n.LastChild = newChild
}
newChild.Parent = n
newChild.PrevSibling = prev
newChild.NextSibling = next
}
// AppendChild adds a node c as a child of n.
//
// It will panic if c already has a parent or siblings.
func (n *Node) AppendChild(c *Node) {
if c.Parent != nil || c.PrevSibling != nil || c.NextSibling != nil {
panic("html: AppendChild called for an attached child Node")
}
last := n.LastChild
if last != nil {
last.NextSibling = c
} else {
n.FirstChild = c
}
n.LastChild = c
c.Parent = n
c.PrevSibling = last
}
// RemoveChild removes a node c that is a child of n. Afterwards, c will have
// no parent and no siblings.
//
// It will panic if c's parent is not n.
func (n *Node) RemoveChild(c *Node) {
if c.Parent != n {
panic("html: RemoveChild called for a non-child Node")
}
if n.FirstChild == c {
n.FirstChild = c.NextSibling
}
if c.NextSibling != nil {
c.NextSibling.PrevSibling = c.PrevSibling
}
if n.LastChild == c {
n.LastChild = c.PrevSibling
}
if c.PrevSibling != nil {
c.PrevSibling.NextSibling = c.NextSibling
}
c.Parent = nil
c.PrevSibling = nil
c.NextSibling = nil
}
// reparentChildren reparents all of src's child nodes to dst.
func reparentChildren(dst, src *Node) {
for {
child := src.FirstChild
if child == nil {
break
}
src.RemoveChild(child)
dst.AppendChild(child)
}
}
// clone returns a new node with the same type, data and attributes.
// The clone has no parent, no siblings and no children.
func (n *Node) clone() *Node {
m := &Node{
Type: n.Type,
DataAtom: n.DataAtom,
Data: n.Data,
Attr: make([]Attribute, len(n.Attr)),
}
copy(m.Attr, n.Attr)
return m
}
// nodeStack is a stack of nodes.
type nodeStack []*Node
// pop pops the stack. It will panic if s is empty.
func (s *nodeStack) pop() *Node {
i := len(*s)
n := (*s)[i-1]
*s = (*s)[:i-1]
return n
}
// top returns the most recently pushed node, or nil if s is empty.
func (s *nodeStack) top() *Node {
if i := len(*s); i > 0 {
return (*s)[i-1]
}
return nil
}
// index returns the index of the top-most occurrence of n in the stack, or -1
// if n is not present.
func (s *nodeStack) index(n *Node) int {
for i := len(*s) - 1; i >= 0; i-- {
if (*s)[i] == n {
return i
}
}
return -1
}
// contains returns whether a is within s.
func (s *nodeStack) contains(a atom.Atom) bool {
for _, n := range *s {
if n.DataAtom == a && n.Namespace == "" {
return true
}
}
return false
}
// insert inserts a node at the given index.
func (s *nodeStack) insert(i int, n *Node) {
(*s) = append(*s, nil)
copy((*s)[i+1:], (*s)[i:])
(*s)[i] = n
}
// remove removes a node from the stack. It is a no-op if n is not present.
func (s *nodeStack) remove(n *Node) {
i := s.index(n)
if i == -1 {
return
}
copy((*s)[i:], (*s)[i+1:])
j := len(*s) - 1
(*s)[j] = nil
*s = (*s)[:j]
}
type insertionModeStack []insertionMode
func (s *insertionModeStack) pop() (im insertionMode) {
i := len(*s)
im = (*s)[i-1]
*s = (*s)[:i-1]
return im
}
func (s *insertionModeStack) top() insertionMode {
if i := len(*s); i > 0 {
return (*s)[i-1]
}
return nil
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,273 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package html
import (
"bufio"
"errors"
"fmt"
"io"
"strings"
)
type writer interface {
io.Writer
io.ByteWriter
WriteString(string) (int, error)
}
// Render renders the parse tree n to the given writer.
//
// Rendering is done on a 'best effort' basis: calling Parse on the output of
// Render will always result in something similar to the original tree, but it
// is not necessarily an exact clone unless the original tree was 'well-formed'.
// 'Well-formed' is not easily specified; the HTML5 specification is
// complicated.
//
// Calling Parse on arbitrary input typically results in a 'well-formed' parse
// tree. However, it is possible for Parse to yield a 'badly-formed' parse tree.
// For example, in a 'well-formed' parse tree, no <a> element is a child of
// another <a> element: parsing "<a><a>" results in two sibling elements.
// Similarly, in a 'well-formed' parse tree, no <a> element is a child of a
// <table> element: parsing "<p><table><a>" results in a <p> with two sibling
// children; the <a> is reparented to the <table>'s parent. However, calling
// Parse on "<a><table><a>" does not return an error, but the result has an <a>
// element with an <a> child, and is therefore not 'well-formed'.
//
// Programmatically constructed trees are typically also 'well-formed', but it
// is possible to construct a tree that looks innocuous but, when rendered and
// re-parsed, results in a different tree. A simple example is that a solitary
// text node would become a tree containing <html>, <head> and <body> elements.
// Another example is that the programmatic equivalent of "a<head>b</head>c"
// becomes "<html><head><head/><body>abc</body></html>".
func Render(w io.Writer, n *Node) error {
if x, ok := w.(writer); ok {
return render(x, n)
}
buf := bufio.NewWriter(w)
if err := render(buf, n); err != nil {
return err
}
return buf.Flush()
}
// plaintextAbort is returned from render1 when a <plaintext> element
// has been rendered. No more end tags should be rendered after that.
var plaintextAbort = errors.New("html: internal error (plaintext abort)")
func render(w writer, n *Node) error {
err := render1(w, n)
if err == plaintextAbort {
err = nil
}
return err
}
func render1(w writer, n *Node) error {
// Render non-element nodes; these are the easy cases.
switch n.Type {
case ErrorNode:
return errors.New("html: cannot render an ErrorNode node")
case TextNode:
return escape(w, n.Data)
case DocumentNode:
for c := n.FirstChild; c != nil; c = c.NextSibling {
if err := render1(w, c); err != nil {
return err
}
}
return nil
case ElementNode:
// No-op.
case CommentNode:
if _, err := w.WriteString("<!--"); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
if _, err := w.WriteString("-->"); err != nil {
return err
}
return nil
case DoctypeNode:
if _, err := w.WriteString("<!DOCTYPE "); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
if n.Attr != nil {
var p, s string
for _, a := range n.Attr {
switch a.Key {
case "public":
p = a.Val
case "system":
s = a.Val
}
}
if p != "" {
if _, err := w.WriteString(" PUBLIC "); err != nil {
return err
}
if err := writeQuoted(w, p); err != nil {
return err
}
if s != "" {
if err := w.WriteByte(' '); err != nil {
return err
}
if err := writeQuoted(w, s); err != nil {
return err
}
}
} else if s != "" {
if _, err := w.WriteString(" SYSTEM "); err != nil {
return err
}
if err := writeQuoted(w, s); err != nil {
return err
}
}
}
return w.WriteByte('>')
case RawNode:
_, err := w.WriteString(n.Data)
return err
default:
return errors.New("html: unknown node type")
}
// Render the <xxx> opening tag.
if err := w.WriteByte('<'); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
for _, a := range n.Attr {
if err := w.WriteByte(' '); err != nil {
return err
}
if a.Namespace != "" {
if _, err := w.WriteString(a.Namespace); err != nil {
return err
}
if err := w.WriteByte(':'); err != nil {
return err
}
}
if _, err := w.WriteString(a.Key); err != nil {
return err
}
if _, err := w.WriteString(`="`); err != nil {
return err
}
if err := escape(w, a.Val); err != nil {
return err
}
if err := w.WriteByte('"'); err != nil {
return err
}
}
if voidElements[n.Data] {
if n.FirstChild != nil {
return fmt.Errorf("html: void element <%s> has child nodes", n.Data)
}
_, err := w.WriteString("/>")
return err
}
if err := w.WriteByte('>'); err != nil {
return err
}
// Add initial newline where there is danger of a newline beging ignored.
if c := n.FirstChild; c != nil && c.Type == TextNode && strings.HasPrefix(c.Data, "\n") {
switch n.Data {
case "pre", "listing", "textarea":
if err := w.WriteByte('\n'); err != nil {
return err
}
}
}
// Render any child nodes.
switch n.Data {
case "iframe", "noembed", "noframes", "noscript", "plaintext", "script", "style", "xmp":
for c := n.FirstChild; c != nil; c = c.NextSibling {
if c.Type == TextNode {
if _, err := w.WriteString(c.Data); err != nil {
return err
}
} else {
if err := render1(w, c); err != nil {
return err
}
}
}
if n.Data == "plaintext" {
// Don't render anything else. <plaintext> must be the
// last element in the file, with no closing tag.
return plaintextAbort
}
default:
for c := n.FirstChild; c != nil; c = c.NextSibling {
if err := render1(w, c); err != nil {
return err
}
}
}
// Render the </xxx> closing tag.
if _, err := w.WriteString("</"); err != nil {
return err
}
if _, err := w.WriteString(n.Data); err != nil {
return err
}
return w.WriteByte('>')
}
// writeQuoted writes s to w surrounded by quotes. Normally it will use double
// quotes, but if s contains a double quote, it will use single quotes.
// It is used for writing the identifiers in a doctype declaration.
// In valid HTML, they can't contain both types of quotes.
func writeQuoted(w writer, s string) error {
var q byte = '"'
if strings.Contains(s, `"`) {
q = '\''
}
if err := w.WriteByte(q); err != nil {
return err
}
if _, err := w.WriteString(s); err != nil {
return err
}
if err := w.WriteByte(q); err != nil {
return err
}
return nil
}
// Section 12.1.2, "Elements", gives this list of void elements. Void elements
// are those that can't have any contents.
var voidElements = map[string]bool{
"area": true,
"base": true,
"br": true,
"col": true,
"embed": true,
"hr": true,
"img": true,
"input": true,
"keygen": true, // "keygen" has been removed from the spec, but are kept here for backwards compatibility.
"link": true,
"meta": true,
"param": true,
"source": true,
"track": true,
"wbr": true,
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,249 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run maketables.go
// Package charmap provides simple character encodings such as IBM Code Page 437
// and Windows 1252.
package charmap // import "golang.org/x/text/encoding/charmap"
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// These encodings vary only in the way clients should interpret them. Their
// coded character set is identical and a single implementation can be shared.
var (
// ISO8859_6E is the ISO 8859-6E encoding.
ISO8859_6E encoding.Encoding = &iso8859_6E
// ISO8859_6I is the ISO 8859-6I encoding.
ISO8859_6I encoding.Encoding = &iso8859_6I
// ISO8859_8E is the ISO 8859-8E encoding.
ISO8859_8E encoding.Encoding = &iso8859_8E
// ISO8859_8I is the ISO 8859-8I encoding.
ISO8859_8I encoding.Encoding = &iso8859_8I
iso8859_6E = internal.Encoding{
Encoding: ISO8859_6,
Name: "ISO-8859-6E",
MIB: identifier.ISO88596E,
}
iso8859_6I = internal.Encoding{
Encoding: ISO8859_6,
Name: "ISO-8859-6I",
MIB: identifier.ISO88596I,
}
iso8859_8E = internal.Encoding{
Encoding: ISO8859_8,
Name: "ISO-8859-8E",
MIB: identifier.ISO88598E,
}
iso8859_8I = internal.Encoding{
Encoding: ISO8859_8,
Name: "ISO-8859-8I",
MIB: identifier.ISO88598I,
}
)
// All is a list of all defined encodings in this package.
var All []encoding.Encoding = listAll
// TODO: implement these encodings, in order of importance.
// ASCII, ISO8859_1: Rather common. Close to Windows 1252.
// ISO8859_9: Close to Windows 1254.
// utf8Enc holds a rune's UTF-8 encoding in data[:len].
type utf8Enc struct {
len uint8
data [3]byte
}
// Charmap is an 8-bit character set encoding.
type Charmap struct {
// name is the encoding's name.
name string
// mib is the encoding type of this encoder.
mib identifier.MIB
// asciiSuperset states whether the encoding is a superset of ASCII.
asciiSuperset bool
// low is the lower bound of the encoded byte for a non-ASCII rune. If
// Charmap.asciiSuperset is true then this will be 0x80, otherwise 0x00.
low uint8
// replacement is the encoded replacement character.
replacement byte
// decode is the map from encoded byte to UTF-8.
decode [256]utf8Enc
// encoding is the map from runes to encoded bytes. Each entry is a
// uint32: the high 8 bits are the encoded byte and the low 24 bits are
// the rune. The table entries are sorted by ascending rune.
encode [256]uint32
}
// NewDecoder implements the encoding.Encoding interface.
func (m *Charmap) NewDecoder() *encoding.Decoder {
return &encoding.Decoder{Transformer: charmapDecoder{charmap: m}}
}
// NewEncoder implements the encoding.Encoding interface.
func (m *Charmap) NewEncoder() *encoding.Encoder {
return &encoding.Encoder{Transformer: charmapEncoder{charmap: m}}
}
// String returns the Charmap's name.
func (m *Charmap) String() string {
return m.name
}
// ID implements an internal interface.
func (m *Charmap) ID() (mib identifier.MIB, other string) {
return m.mib, ""
}
// charmapDecoder implements transform.Transformer by decoding to UTF-8.
type charmapDecoder struct {
transform.NopResetter
charmap *Charmap
}
func (m charmapDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
for i, c := range src {
if m.charmap.asciiSuperset && c < utf8.RuneSelf {
if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = c
nDst++
nSrc = i + 1
continue
}
decode := &m.charmap.decode[c]
n := int(decode.len)
if nDst+n > len(dst) {
err = transform.ErrShortDst
break
}
// It's 15% faster to avoid calling copy for these tiny slices.
for j := 0; j < n; j++ {
dst[nDst] = decode.data[j]
nDst++
}
nSrc = i + 1
}
return nDst, nSrc, err
}
// DecodeByte returns the Charmap's rune decoding of the byte b.
func (m *Charmap) DecodeByte(b byte) rune {
switch x := &m.decode[b]; x.len {
case 1:
return rune(x.data[0])
case 2:
return rune(x.data[0]&0x1f)<<6 | rune(x.data[1]&0x3f)
default:
return rune(x.data[0]&0x0f)<<12 | rune(x.data[1]&0x3f)<<6 | rune(x.data[2]&0x3f)
}
}
// charmapEncoder implements transform.Transformer by encoding from UTF-8.
type charmapEncoder struct {
transform.NopResetter
charmap *Charmap
}
func (m charmapEncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
loop:
for nSrc < len(src) {
if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
if m.charmap.asciiSuperset {
nSrc++
dst[nDst] = uint8(r)
nDst++
continue
}
size = 1
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
} else {
err = internal.RepertoireError(m.charmap.replacement)
}
break
}
}
// Binary search in [low, high) for that rune in the m.charmap.encode table.
for low, high := int(m.charmap.low), 0x100; ; {
if low >= high {
err = internal.RepertoireError(m.charmap.replacement)
break loop
}
mid := (low + high) / 2
got := m.charmap.encode[mid]
gotRune := rune(got & (1<<24 - 1))
if gotRune < r {
low = mid + 1
} else if gotRune > r {
high = mid
} else {
dst[nDst] = byte(got >> 24)
nDst++
break
}
}
nSrc += size
}
return nDst, nSrc, err
}
// EncodeRune returns the Charmap's byte encoding of the rune r. ok is whether
// r is in the Charmap's repertoire. If not, b is set to the Charmap's
// replacement byte. This is often the ASCII substitute character '\x1a'.
func (m *Charmap) EncodeRune(r rune) (b byte, ok bool) {
if r < utf8.RuneSelf && m.asciiSuperset {
return byte(r), true
}
for low, high := int(m.low), 0x100; ; {
if low >= high {
return m.replacement, false
}
mid := (low + high) / 2
got := m.encode[mid]
gotRune := rune(got & (1<<24 - 1))
if gotRune < r {
low = mid + 1
} else if gotRune > r {
high = mid
} else {
return byte(got >> 24), true
}
}
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,335 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package encoding defines an interface for character encodings, such as Shift
// JIS and Windows 1252, that can convert to and from UTF-8.
//
// Encoding implementations are provided in other packages, such as
// golang.org/x/text/encoding/charmap and
// golang.org/x/text/encoding/japanese.
package encoding // import "golang.org/x/text/encoding"
import (
"errors"
"io"
"strconv"
"unicode/utf8"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// TODO:
// - There seems to be some inconsistency in when decoders return errors
// and when not. Also documentation seems to suggest they shouldn't return
// errors at all (except for UTF-16).
// - Encoders seem to rely on or at least benefit from the input being in NFC
// normal form. Perhaps add an example how users could prepare their output.
// Encoding is a character set encoding that can be transformed to and from
// UTF-8.
type Encoding interface {
// NewDecoder returns a Decoder.
NewDecoder() *Decoder
// NewEncoder returns an Encoder.
NewEncoder() *Encoder
}
// A Decoder converts bytes to UTF-8. It implements transform.Transformer.
//
// Transforming source bytes that are not of that encoding will not result in an
// error per se. Each byte that cannot be transcoded will be represented in the
// output by the UTF-8 encoding of '\uFFFD', the replacement rune.
type Decoder struct {
transform.Transformer
// This forces external creators of Decoders to use names in struct
// initializers, allowing for future extendibility without having to break
// code.
_ struct{}
}
// Bytes converts the given encoded bytes to UTF-8. It returns the converted
// bytes or nil, err if any error occurred.
func (d *Decoder) Bytes(b []byte) ([]byte, error) {
b, _, err := transform.Bytes(d, b)
if err != nil {
return nil, err
}
return b, nil
}
// String converts the given encoded string to UTF-8. It returns the converted
// string or "", err if any error occurred.
func (d *Decoder) String(s string) (string, error) {
s, _, err := transform.String(d, s)
if err != nil {
return "", err
}
return s, nil
}
// Reader wraps another Reader to decode its bytes.
//
// The Decoder may not be used for any other operation as long as the returned
// Reader is in use.
func (d *Decoder) Reader(r io.Reader) io.Reader {
return transform.NewReader(r, d)
}
// An Encoder converts bytes from UTF-8. It implements transform.Transformer.
//
// Each rune that cannot be transcoded will result in an error. In this case,
// the transform will consume all source byte up to, not including the offending
// rune. Transforming source bytes that are not valid UTF-8 will be replaced by
// `\uFFFD`. To return early with an error instead, use transform.Chain to
// preprocess the data with a UTF8Validator.
type Encoder struct {
transform.Transformer
// This forces external creators of Encoders to use names in struct
// initializers, allowing for future extendibility without having to break
// code.
_ struct{}
}
// Bytes converts bytes from UTF-8. It returns the converted bytes or nil, err if
// any error occurred.
func (e *Encoder) Bytes(b []byte) ([]byte, error) {
b, _, err := transform.Bytes(e, b)
if err != nil {
return nil, err
}
return b, nil
}
// String converts a string from UTF-8. It returns the converted string or
// "", err if any error occurred.
func (e *Encoder) String(s string) (string, error) {
s, _, err := transform.String(e, s)
if err != nil {
return "", err
}
return s, nil
}
// Writer wraps another Writer to encode its UTF-8 output.
//
// The Encoder may not be used for any other operation as long as the returned
// Writer is in use.
func (e *Encoder) Writer(w io.Writer) io.Writer {
return transform.NewWriter(w, e)
}
// ASCIISub is the ASCII substitute character, as recommended by
// https://unicode.org/reports/tr36/#Text_Comparison
const ASCIISub = '\x1a'
// Nop is the nop encoding. Its transformed bytes are the same as the source
// bytes; it does not replace invalid UTF-8 sequences.
var Nop Encoding = nop{}
type nop struct{}
func (nop) NewDecoder() *Decoder {
return &Decoder{Transformer: transform.Nop}
}
func (nop) NewEncoder() *Encoder {
return &Encoder{Transformer: transform.Nop}
}
// Replacement is the replacement encoding. Decoding from the replacement
// encoding yields a single '\uFFFD' replacement rune. Encoding from UTF-8 to
// the replacement encoding yields the same as the source bytes except that
// invalid UTF-8 is converted to '\uFFFD'.
//
// It is defined at http://encoding.spec.whatwg.org/#replacement
var Replacement Encoding = replacement{}
type replacement struct{}
func (replacement) NewDecoder() *Decoder {
return &Decoder{Transformer: replacementDecoder{}}
}
func (replacement) NewEncoder() *Encoder {
return &Encoder{Transformer: replacementEncoder{}}
}
func (replacement) ID() (mib identifier.MIB, other string) {
return identifier.Replacement, ""
}
type replacementDecoder struct{ transform.NopResetter }
func (replacementDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if len(dst) < 3 {
return 0, 0, transform.ErrShortDst
}
if atEOF {
const fffd = "\ufffd"
dst[0] = fffd[0]
dst[1] = fffd[1]
dst[2] = fffd[2]
nDst = 3
}
return nDst, len(src), nil
}
type replacementEncoder struct{ transform.NopResetter }
func (replacementEncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
r = '\ufffd'
}
}
if nDst+utf8.RuneLen(r) > len(dst) {
err = transform.ErrShortDst
break
}
nDst += utf8.EncodeRune(dst[nDst:], r)
}
return nDst, nSrc, err
}
// HTMLEscapeUnsupported wraps encoders to replace source runes outside the
// repertoire of the destination encoding with HTML escape sequences.
//
// This wrapper exists to comply to URL and HTML forms requiring a
// non-terminating legacy encoder. The produced sequences may lead to data
// loss as they are indistinguishable from legitimate input. To avoid this
// issue, use UTF-8 encodings whenever possible.
func HTMLEscapeUnsupported(e *Encoder) *Encoder {
return &Encoder{Transformer: &errorHandler{e, errorToHTML}}
}
// ReplaceUnsupported wraps encoders to replace source runes outside the
// repertoire of the destination encoding with an encoding-specific
// replacement.
//
// This wrapper is only provided for backwards compatibility and legacy
// handling. Its use is strongly discouraged. Use UTF-8 whenever possible.
func ReplaceUnsupported(e *Encoder) *Encoder {
return &Encoder{Transformer: &errorHandler{e, errorToReplacement}}
}
type errorHandler struct {
*Encoder
handler func(dst []byte, r rune, err repertoireError) (n int, ok bool)
}
// TODO: consider making this error public in some form.
type repertoireError interface {
Replacement() byte
}
func (h errorHandler) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
nDst, nSrc, err = h.Transformer.Transform(dst, src, atEOF)
for err != nil {
rerr, ok := err.(repertoireError)
if !ok {
return nDst, nSrc, err
}
r, sz := utf8.DecodeRune(src[nSrc:])
n, ok := h.handler(dst[nDst:], r, rerr)
if !ok {
return nDst, nSrc, transform.ErrShortDst
}
err = nil
nDst += n
if nSrc += sz; nSrc < len(src) {
var dn, sn int
dn, sn, err = h.Transformer.Transform(dst[nDst:], src[nSrc:], atEOF)
nDst += dn
nSrc += sn
}
}
return nDst, nSrc, err
}
func errorToHTML(dst []byte, r rune, err repertoireError) (n int, ok bool) {
buf := [8]byte{}
b := strconv.AppendUint(buf[:0], uint64(r), 10)
if n = len(b) + len("&#;"); n >= len(dst) {
return 0, false
}
dst[0] = '&'
dst[1] = '#'
dst[copy(dst[2:], b)+2] = ';'
return n, true
}
func errorToReplacement(dst []byte, r rune, err repertoireError) (n int, ok bool) {
if len(dst) == 0 {
return 0, false
}
dst[0] = err.Replacement()
return 1, true
}
// ErrInvalidUTF8 means that a transformer encountered invalid UTF-8.
var ErrInvalidUTF8 = errors.New("encoding: invalid UTF-8")
// UTF8Validator is a transformer that returns ErrInvalidUTF8 on the first
// input byte that is not valid UTF-8.
var UTF8Validator transform.Transformer = utf8Validator{}
type utf8Validator struct{ transform.NopResetter }
func (utf8Validator) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
n := len(src)
if n > len(dst) {
n = len(dst)
}
for i := 0; i < n; {
if c := src[i]; c < utf8.RuneSelf {
dst[i] = c
i++
continue
}
_, size := utf8.DecodeRune(src[i:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
err = ErrInvalidUTF8
if !atEOF && !utf8.FullRune(src[i:]) {
err = transform.ErrShortSrc
}
return i, i, err
}
if i+size > len(dst) {
return i, i, transform.ErrShortDst
}
for ; size > 0; size-- {
dst[i] = src[i]
i++
}
}
if len(src) > len(dst) {
err = transform.ErrShortDst
}
return n, n, err
}

@ -0,0 +1,86 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go
// Package htmlindex maps character set encoding names to Encodings as
// recommended by the W3C for use in HTML 5. See http://www.w3.org/TR/encoding.
package htmlindex
// TODO: perhaps have a "bare" version of the index (used by this package) that
// is not pre-loaded with all encodings. Global variables in encodings prevent
// the linker from being able to purge unneeded tables. This means that
// referencing all encodings, as this package does for the default index, links
// in all encodings unconditionally.
//
// This issue can be solved by either solving the linking issue (see
// https://github.com/golang/go/issues/6330) or refactoring the encoding tables
// (e.g. moving the tables to internal packages that do not use global
// variables).
// TODO: allow canonicalizing names
import (
"errors"
"strings"
"sync"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/language"
)
var (
errInvalidName = errors.New("htmlindex: invalid encoding name")
errUnknown = errors.New("htmlindex: unknown Encoding")
errUnsupported = errors.New("htmlindex: this encoding is not supported")
)
var (
matcherOnce sync.Once
matcher language.Matcher
)
// LanguageDefault returns the canonical name of the default encoding for a
// given language.
func LanguageDefault(tag language.Tag) string {
matcherOnce.Do(func() {
tags := []language.Tag{}
for _, t := range strings.Split(locales, " ") {
tags = append(tags, language.MustParse(t))
}
matcher = language.NewMatcher(tags, language.PreferSameScript(true))
})
_, i, _ := matcher.Match(tag)
return canonical[localeMap[i]] // Default is Windows-1252.
}
// Get returns an Encoding for one of the names listed in
// http://www.w3.org/TR/encoding using the Default Index. Matching is case-
// insensitive.
func Get(name string) (encoding.Encoding, error) {
x, ok := nameMap[strings.ToLower(strings.TrimSpace(name))]
if !ok {
return nil, errInvalidName
}
return encodings[x], nil
}
// Name reports the canonical name of the given Encoding. It will return
// an error if e is not associated with a supported encoding scheme.
func Name(e encoding.Encoding) (string, error) {
id, ok := e.(identifier.Interface)
if !ok {
return "", errUnknown
}
mib, _ := id.ID()
if mib == 0 {
return "", errUnknown
}
v, ok := mibMap[mib]
if !ok {
return "", errUnsupported
}
return canonical[v], nil
}

@ -0,0 +1,105 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package htmlindex
import (
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/charmap"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/encoding/japanese"
"golang.org/x/text/encoding/korean"
"golang.org/x/text/encoding/simplifiedchinese"
"golang.org/x/text/encoding/traditionalchinese"
"golang.org/x/text/encoding/unicode"
)
// mibMap maps a MIB identifier to an htmlEncoding index.
var mibMap = map[identifier.MIB]htmlEncoding{
identifier.UTF8: utf8,
identifier.UTF16BE: utf16be,
identifier.UTF16LE: utf16le,
identifier.IBM866: ibm866,
identifier.ISOLatin2: iso8859_2,
identifier.ISOLatin3: iso8859_3,
identifier.ISOLatin4: iso8859_4,
identifier.ISOLatinCyrillic: iso8859_5,
identifier.ISOLatinArabic: iso8859_6,
identifier.ISOLatinGreek: iso8859_7,
identifier.ISOLatinHebrew: iso8859_8,
identifier.ISO88598I: iso8859_8I,
identifier.ISOLatin6: iso8859_10,
identifier.ISO885913: iso8859_13,
identifier.ISO885914: iso8859_14,
identifier.ISO885915: iso8859_15,
identifier.ISO885916: iso8859_16,
identifier.KOI8R: koi8r,
identifier.KOI8U: koi8u,
identifier.Macintosh: macintosh,
identifier.MacintoshCyrillic: macintoshCyrillic,
identifier.Windows874: windows874,
identifier.Windows1250: windows1250,
identifier.Windows1251: windows1251,
identifier.Windows1252: windows1252,
identifier.Windows1253: windows1253,
identifier.Windows1254: windows1254,
identifier.Windows1255: windows1255,
identifier.Windows1256: windows1256,
identifier.Windows1257: windows1257,
identifier.Windows1258: windows1258,
identifier.XUserDefined: xUserDefined,
identifier.GBK: gbk,
identifier.GB18030: gb18030,
identifier.Big5: big5,
identifier.EUCPkdFmtJapanese: eucjp,
identifier.ISO2022JP: iso2022jp,
identifier.ShiftJIS: shiftJIS,
identifier.EUCKR: euckr,
identifier.Replacement: replacement,
}
// encodings maps the internal htmlEncoding to an Encoding.
// TODO: consider using a reusable index in encoding/internal.
var encodings = [numEncodings]encoding.Encoding{
utf8: unicode.UTF8,
ibm866: charmap.CodePage866,
iso8859_2: charmap.ISO8859_2,
iso8859_3: charmap.ISO8859_3,
iso8859_4: charmap.ISO8859_4,
iso8859_5: charmap.ISO8859_5,
iso8859_6: charmap.ISO8859_6,
iso8859_7: charmap.ISO8859_7,
iso8859_8: charmap.ISO8859_8,
iso8859_8I: charmap.ISO8859_8I,
iso8859_10: charmap.ISO8859_10,
iso8859_13: charmap.ISO8859_13,
iso8859_14: charmap.ISO8859_14,
iso8859_15: charmap.ISO8859_15,
iso8859_16: charmap.ISO8859_16,
koi8r: charmap.KOI8R,
koi8u: charmap.KOI8U,
macintosh: charmap.Macintosh,
windows874: charmap.Windows874,
windows1250: charmap.Windows1250,
windows1251: charmap.Windows1251,
windows1252: charmap.Windows1252,
windows1253: charmap.Windows1253,
windows1254: charmap.Windows1254,
windows1255: charmap.Windows1255,
windows1256: charmap.Windows1256,
windows1257: charmap.Windows1257,
windows1258: charmap.Windows1258,
macintoshCyrillic: charmap.MacintoshCyrillic,
gbk: simplifiedchinese.GBK,
gb18030: simplifiedchinese.GB18030,
big5: traditionalchinese.Big5,
eucjp: japanese.EUCJP,
iso2022jp: japanese.ISO2022JP,
shiftJIS: japanese.ShiftJIS,
euckr: korean.EUCKR,
replacement: encoding.Replacement,
utf16be: unicode.UTF16(unicode.BigEndian, unicode.IgnoreBOM),
utf16le: unicode.UTF16(unicode.LittleEndian, unicode.IgnoreBOM),
xUserDefined: charmap.XUserDefined,
}

@ -0,0 +1,353 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package htmlindex
type htmlEncoding byte
const (
utf8 htmlEncoding = iota
ibm866
iso8859_2
iso8859_3
iso8859_4
iso8859_5
iso8859_6
iso8859_7
iso8859_8
iso8859_8I
iso8859_10
iso8859_13
iso8859_14
iso8859_15
iso8859_16
koi8r
koi8u
macintosh
windows874
windows1250
windows1251
windows1252
windows1253
windows1254
windows1255
windows1256
windows1257
windows1258
macintoshCyrillic
gbk
gb18030
big5
eucjp
iso2022jp
shiftJIS
euckr
replacement
utf16be
utf16le
xUserDefined
numEncodings
)
var canonical = [numEncodings]string{
"utf-8",
"ibm866",
"iso-8859-2",
"iso-8859-3",
"iso-8859-4",
"iso-8859-5",
"iso-8859-6",
"iso-8859-7",
"iso-8859-8",
"iso-8859-8-i",
"iso-8859-10",
"iso-8859-13",
"iso-8859-14",
"iso-8859-15",
"iso-8859-16",
"koi8-r",
"koi8-u",
"macintosh",
"windows-874",
"windows-1250",
"windows-1251",
"windows-1252",
"windows-1253",
"windows-1254",
"windows-1255",
"windows-1256",
"windows-1257",
"windows-1258",
"x-mac-cyrillic",
"gbk",
"gb18030",
"big5",
"euc-jp",
"iso-2022-jp",
"shift_jis",
"euc-kr",
"replacement",
"utf-16be",
"utf-16le",
"x-user-defined",
}
var nameMap = map[string]htmlEncoding{
"unicode-1-1-utf-8": utf8,
"utf-8": utf8,
"utf8": utf8,
"866": ibm866,
"cp866": ibm866,
"csibm866": ibm866,
"ibm866": ibm866,
"csisolatin2": iso8859_2,
"iso-8859-2": iso8859_2,
"iso-ir-101": iso8859_2,
"iso8859-2": iso8859_2,
"iso88592": iso8859_2,
"iso_8859-2": iso8859_2,
"iso_8859-2:1987": iso8859_2,
"l2": iso8859_2,
"latin2": iso8859_2,
"csisolatin3": iso8859_3,
"iso-8859-3": iso8859_3,
"iso-ir-109": iso8859_3,
"iso8859-3": iso8859_3,
"iso88593": iso8859_3,
"iso_8859-3": iso8859_3,
"iso_8859-3:1988": iso8859_3,
"l3": iso8859_3,
"latin3": iso8859_3,
"csisolatin4": iso8859_4,
"iso-8859-4": iso8859_4,
"iso-ir-110": iso8859_4,
"iso8859-4": iso8859_4,
"iso88594": iso8859_4,
"iso_8859-4": iso8859_4,
"iso_8859-4:1988": iso8859_4,
"l4": iso8859_4,
"latin4": iso8859_4,
"csisolatincyrillic": iso8859_5,
"cyrillic": iso8859_5,
"iso-8859-5": iso8859_5,
"iso-ir-144": iso8859_5,
"iso8859-5": iso8859_5,
"iso88595": iso8859_5,
"iso_8859-5": iso8859_5,
"iso_8859-5:1988": iso8859_5,
"arabic": iso8859_6,
"asmo-708": iso8859_6,
"csiso88596e": iso8859_6,
"csiso88596i": iso8859_6,
"csisolatinarabic": iso8859_6,
"ecma-114": iso8859_6,
"iso-8859-6": iso8859_6,
"iso-8859-6-e": iso8859_6,
"iso-8859-6-i": iso8859_6,
"iso-ir-127": iso8859_6,
"iso8859-6": iso8859_6,
"iso88596": iso8859_6,
"iso_8859-6": iso8859_6,
"iso_8859-6:1987": iso8859_6,
"csisolatingreek": iso8859_7,
"ecma-118": iso8859_7,
"elot_928": iso8859_7,
"greek": iso8859_7,
"greek8": iso8859_7,
"iso-8859-7": iso8859_7,
"iso-ir-126": iso8859_7,
"iso8859-7": iso8859_7,
"iso88597": iso8859_7,
"iso_8859-7": iso8859_7,
"iso_8859-7:1987": iso8859_7,
"sun_eu_greek": iso8859_7,
"csiso88598e": iso8859_8,
"csisolatinhebrew": iso8859_8,
"hebrew": iso8859_8,
"iso-8859-8": iso8859_8,
"iso-8859-8-e": iso8859_8,
"iso-ir-138": iso8859_8,
"iso8859-8": iso8859_8,
"iso88598": iso8859_8,
"iso_8859-8": iso8859_8,
"iso_8859-8:1988": iso8859_8,
"visual": iso8859_8,
"csiso88598i": iso8859_8I,
"iso-8859-8-i": iso8859_8I,
"logical": iso8859_8I,
"csisolatin6": iso8859_10,
"iso-8859-10": iso8859_10,
"iso-ir-157": iso8859_10,
"iso8859-10": iso8859_10,
"iso885910": iso8859_10,
"l6": iso8859_10,
"latin6": iso8859_10,
"iso-8859-13": iso8859_13,
"iso8859-13": iso8859_13,
"iso885913": iso8859_13,
"iso-8859-14": iso8859_14,
"iso8859-14": iso8859_14,
"iso885914": iso8859_14,
"csisolatin9": iso8859_15,
"iso-8859-15": iso8859_15,
"iso8859-15": iso8859_15,
"iso885915": iso8859_15,
"iso_8859-15": iso8859_15,
"l9": iso8859_15,
"iso-8859-16": iso8859_16,
"cskoi8r": koi8r,
"koi": koi8r,
"koi8": koi8r,
"koi8-r": koi8r,
"koi8_r": koi8r,
"koi8-ru": koi8u,
"koi8-u": koi8u,
"csmacintosh": macintosh,
"mac": macintosh,
"macintosh": macintosh,
"x-mac-roman": macintosh,
"dos-874": windows874,
"iso-8859-11": windows874,
"iso8859-11": windows874,
"iso885911": windows874,
"tis-620": windows874,
"windows-874": windows874,
"cp1250": windows1250,
"windows-1250": windows1250,
"x-cp1250": windows1250,
"cp1251": windows1251,
"windows-1251": windows1251,
"x-cp1251": windows1251,
"ansi_x3.4-1968": windows1252,
"ascii": windows1252,
"cp1252": windows1252,
"cp819": windows1252,
"csisolatin1": windows1252,
"ibm819": windows1252,
"iso-8859-1": windows1252,
"iso-ir-100": windows1252,
"iso8859-1": windows1252,
"iso88591": windows1252,
"iso_8859-1": windows1252,
"iso_8859-1:1987": windows1252,
"l1": windows1252,
"latin1": windows1252,
"us-ascii": windows1252,
"windows-1252": windows1252,
"x-cp1252": windows1252,
"cp1253": windows1253,
"windows-1253": windows1253,
"x-cp1253": windows1253,
"cp1254": windows1254,
"csisolatin5": windows1254,
"iso-8859-9": windows1254,
"iso-ir-148": windows1254,
"iso8859-9": windows1254,
"iso88599": windows1254,
"iso_8859-9": windows1254,
"iso_8859-9:1989": windows1254,
"l5": windows1254,
"latin5": windows1254,
"windows-1254": windows1254,
"x-cp1254": windows1254,
"cp1255": windows1255,
"windows-1255": windows1255,
"x-cp1255": windows1255,
"cp1256": windows1256,
"windows-1256": windows1256,
"x-cp1256": windows1256,
"cp1257": windows1257,
"windows-1257": windows1257,
"x-cp1257": windows1257,
"cp1258": windows1258,
"windows-1258": windows1258,
"x-cp1258": windows1258,
"x-mac-cyrillic": macintoshCyrillic,
"x-mac-ukrainian": macintoshCyrillic,
"chinese": gbk,
"csgb2312": gbk,
"csiso58gb231280": gbk,
"gb2312": gbk,
"gb_2312": gbk,
"gb_2312-80": gbk,
"gbk": gbk,
"iso-ir-58": gbk,
"x-gbk": gbk,
"gb18030": gb18030,
"big5": big5,
"big5-hkscs": big5,
"cn-big5": big5,
"csbig5": big5,
"x-x-big5": big5,
"cseucpkdfmtjapanese": eucjp,
"euc-jp": eucjp,
"x-euc-jp": eucjp,
"csiso2022jp": iso2022jp,
"iso-2022-jp": iso2022jp,
"csshiftjis": shiftJIS,
"ms932": shiftJIS,
"ms_kanji": shiftJIS,
"shift-jis": shiftJIS,
"shift_jis": shiftJIS,
"sjis": shiftJIS,
"windows-31j": shiftJIS,
"x-sjis": shiftJIS,
"cseuckr": euckr,
"csksc56011987": euckr,
"euc-kr": euckr,
"iso-ir-149": euckr,
"korean": euckr,
"ks_c_5601-1987": euckr,
"ks_c_5601-1989": euckr,
"ksc5601": euckr,
"ksc_5601": euckr,
"windows-949": euckr,
"csiso2022kr": replacement,
"hz-gb-2312": replacement,
"iso-2022-cn": replacement,
"iso-2022-cn-ext": replacement,
"iso-2022-kr": replacement,
"replacement": replacement,
"utf-16be": utf16be,
"utf-16": utf16le,
"utf-16le": utf16le,
"x-user-defined": xUserDefined,
}
var localeMap = []htmlEncoding{
windows1252, // und_Latn
windows1256, // ar
windows1251, // ba
windows1251, // be
windows1251, // bg
windows1250, // cs
iso8859_7, // el
windows1257, // et
windows1256, // fa
windows1255, // he
windows1250, // hr
iso8859_2, // hu
shiftJIS, // ja
windows1251, // kk
euckr, // ko
windows1254, // ku
windows1251, // ky
windows1257, // lt
windows1257, // lv
windows1251, // mk
iso8859_2, // pl
windows1251, // ru
windows1251, // sah
windows1250, // sk
iso8859_2, // sl
windows1251, // sr
windows1251, // tg
windows874, // th
windows1254, // tr
windows1251, // tt
windows1251, // uk
windows1258, // vi
gb18030, // zh-hans
big5, // zh-hant
}
const locales = "und_Latn ar ba be bg cs el et fa he hr hu ja kk ko ku ky lt lv mk pl ru sah sk sl sr tg th tr tt uk vi zh-hans zh-hant"

@ -0,0 +1,81 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go
// Package identifier defines the contract between implementations of Encoding
// and Index by defining identifiers that uniquely identify standardized coded
// character sets (CCS) and character encoding schemes (CES), which we will
// together refer to as encodings, for which Encoding implementations provide
// converters to and from UTF-8. This package is typically only of concern to
// implementers of Indexes and Encodings.
//
// One part of the identifier is the MIB code, which is defined by IANA and
// uniquely identifies a CCS or CES. Each code is associated with data that
// references authorities, official documentation as well as aliases and MIME
// names.
//
// Not all CESs are covered by the IANA registry. The "other" string that is
// returned by ID can be used to identify other character sets or versions of
// existing ones.
//
// It is recommended that each package that provides a set of Encodings provide
// the All and Common variables to reference all supported encodings and
// commonly used subset. This allows Index implementations to include all
// available encodings without explicitly referencing or knowing about them.
package identifier
// Note: this package is internal, but could be made public if there is a need
// for writing third-party Indexes and Encodings.
// References:
// - http://source.icu-project.org/repos/icu/icu/trunk/source/data/mappings/convrtrs.txt
// - http://www.iana.org/assignments/character-sets/character-sets.xhtml
// - http://www.iana.org/assignments/ianacharset-mib/ianacharset-mib
// - http://www.ietf.org/rfc/rfc2978.txt
// - https://www.unicode.org/reports/tr22/
// - http://www.w3.org/TR/encoding/
// - https://encoding.spec.whatwg.org/
// - https://encoding.spec.whatwg.org/encodings.json
// - https://tools.ietf.org/html/rfc6657#section-5
// Interface can be implemented by Encodings to define the CCS or CES for which
// it implements conversions.
type Interface interface {
// ID returns an encoding identifier. Exactly one of the mib and other
// values should be non-zero.
//
// In the usual case it is only necessary to indicate the MIB code. The
// other string can be used to specify encodings for which there is no MIB,
// such as "x-mac-dingbat".
//
// The other string may only contain the characters a-z, A-Z, 0-9, - and _.
ID() (mib MIB, other string)
// NOTE: the restrictions on the encoding are to allow extending the syntax
// with additional information such as versions, vendors and other variants.
}
// A MIB identifies an encoding. It is derived from the IANA MIB codes and adds
// some identifiers for some encodings that are not covered by the IANA
// standard.
//
// See http://www.iana.org/assignments/ianacharset-mib.
type MIB uint16
// These additional MIB types are not defined in IANA. They are added because
// they are common and defined within the text repo.
const (
// Unofficial marks the start of encodings not registered by IANA.
Unofficial MIB = 10000 + iota
// Replacement is the WhatWG replacement encoding.
Replacement
// XUserDefined is the code for x-user-defined.
XUserDefined
// MacintoshCyrillic is the code for x-mac-cyrillic.
MacintoshCyrillic
)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,75 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package internal contains code that is shared among encoding implementations.
package internal
import (
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// Encoding is an implementation of the Encoding interface that adds the String
// and ID methods to an existing encoding.
type Encoding struct {
encoding.Encoding
Name string
MIB identifier.MIB
}
// _ verifies that Encoding implements identifier.Interface.
var _ identifier.Interface = (*Encoding)(nil)
func (e *Encoding) String() string {
return e.Name
}
func (e *Encoding) ID() (mib identifier.MIB, other string) {
return e.MIB, ""
}
// SimpleEncoding is an Encoding that combines two Transformers.
type SimpleEncoding struct {
Decoder transform.Transformer
Encoder transform.Transformer
}
func (e *SimpleEncoding) NewDecoder() *encoding.Decoder {
return &encoding.Decoder{Transformer: e.Decoder}
}
func (e *SimpleEncoding) NewEncoder() *encoding.Encoder {
return &encoding.Encoder{Transformer: e.Encoder}
}
// FuncEncoding is an Encoding that combines two functions returning a new
// Transformer.
type FuncEncoding struct {
Decoder func() transform.Transformer
Encoder func() transform.Transformer
}
func (e FuncEncoding) NewDecoder() *encoding.Decoder {
return &encoding.Decoder{Transformer: e.Decoder()}
}
func (e FuncEncoding) NewEncoder() *encoding.Encoder {
return &encoding.Encoder{Transformer: e.Encoder()}
}
// A RepertoireError indicates a rune is not in the repertoire of a destination
// encoding. It is associated with an encoding-specific suggested replacement
// byte.
type RepertoireError byte
// Error implements the error interrface.
func (r RepertoireError) Error() string {
return "encoding: rune not supported by encoding."
}
// Replacement returns the replacement string associated with this error.
func (r RepertoireError) Replacement() byte { return byte(r) }
var ErrASCIIReplacement = RepertoireError(encoding.ASCIISub)

@ -0,0 +1,12 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package japanese
import (
"golang.org/x/text/encoding"
)
// All is a list of all defined encodings in this package.
var All = []encoding.Encoding{EUCJP, ISO2022JP, ShiftJIS}

@ -0,0 +1,225 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package japanese
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// EUCJP is the EUC-JP encoding.
var EUCJP encoding.Encoding = &eucJP
var eucJP = internal.Encoding{
&internal.SimpleEncoding{eucJPDecoder{}, eucJPEncoder{}},
"EUC-JP",
identifier.EUCPkdFmtJapanese,
}
type eucJPDecoder struct{ transform.NopResetter }
// See https://encoding.spec.whatwg.org/#euc-jp-decoder.
func (eucJPDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
loop:
for ; nSrc < len(src); nSrc += size {
switch c0 := src[nSrc]; {
case c0 < utf8.RuneSelf:
r, size = rune(c0), 1
case c0 == 0x8e:
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
break
}
c1 := src[nSrc+1]
switch {
case c1 < 0xa1:
r, size = utf8.RuneError, 1
case c1 > 0xdf:
r, size = utf8.RuneError, 2
if c1 == 0xff {
size = 1
}
default:
r, size = rune(c1)+(0xff61-0xa1), 2
}
case c0 == 0x8f:
if nSrc+2 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
if p := nSrc + 1; p < len(src) && 0xa1 <= src[p] && src[p] < 0xfe {
size = 2
}
break
}
c1 := src[nSrc+1]
if c1 < 0xa1 || 0xfe < c1 {
r, size = utf8.RuneError, 1
break
}
c2 := src[nSrc+2]
if c2 < 0xa1 || 0xfe < c2 {
r, size = utf8.RuneError, 2
break
}
r, size = utf8.RuneError, 3
if i := int(c1-0xa1)*94 + int(c2-0xa1); i < len(jis0212Decode) {
r = rune(jis0212Decode[i])
if r == 0 {
r = utf8.RuneError
}
}
case 0xa1 <= c0 && c0 <= 0xfe:
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
break
}
c1 := src[nSrc+1]
if c1 < 0xa1 || 0xfe < c1 {
r, size = utf8.RuneError, 1
break
}
r, size = utf8.RuneError, 2
if i := int(c0-0xa1)*94 + int(c1-0xa1); i < len(jis0208Decode) {
r = rune(jis0208Decode[i])
if r == 0 {
r = utf8.RuneError
}
}
default:
r, size = utf8.RuneError, 1
}
if nDst+utf8.RuneLen(r) > len(dst) {
err = transform.ErrShortDst
break loop
}
nDst += utf8.EncodeRune(dst[nDst:], r)
}
return nDst, nSrc, err
}
type eucJPEncoder struct{ transform.NopResetter }
func (eucJPEncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
}
// func init checks that the switch covers all tables.
switch {
case encode0Low <= r && r < encode0High:
if r = rune(encode0[r-encode0Low]); r != 0 {
goto write2or3
}
case encode1Low <= r && r < encode1High:
if r = rune(encode1[r-encode1Low]); r != 0 {
goto write2or3
}
case encode2Low <= r && r < encode2High:
if r = rune(encode2[r-encode2Low]); r != 0 {
goto write2or3
}
case encode3Low <= r && r < encode3High:
if r = rune(encode3[r-encode3Low]); r != 0 {
goto write2or3
}
case encode4Low <= r && r < encode4High:
if r = rune(encode4[r-encode4Low]); r != 0 {
goto write2or3
}
case encode5Low <= r && r < encode5High:
if 0xff61 <= r && r < 0xffa0 {
goto write2
}
if r = rune(encode5[r-encode5Low]); r != 0 {
goto write2or3
}
}
err = internal.ErrASCIIReplacement
break
}
if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r)
nDst++
continue
write2or3:
if r>>tableShift == jis0208 {
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
} else {
if nDst+3 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = 0x8f
nDst++
}
dst[nDst+0] = 0xa1 + uint8(r>>codeShift)&codeMask
dst[nDst+1] = 0xa1 + uint8(r)&codeMask
nDst += 2
continue
write2:
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = 0x8e
dst[nDst+1] = uint8(r - (0xff61 - 0xa1))
nDst += 2
continue
}
return nDst, nSrc, err
}
func init() {
// Check that the hard-coded encode switch covers all tables.
if numEncodeTables != 6 {
panic("bad numEncodeTables")
}
}

@ -0,0 +1,299 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package japanese
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// ISO2022JP is the ISO-2022-JP encoding.
var ISO2022JP encoding.Encoding = &iso2022JP
var iso2022JP = internal.Encoding{
internal.FuncEncoding{iso2022JPNewDecoder, iso2022JPNewEncoder},
"ISO-2022-JP",
identifier.ISO2022JP,
}
func iso2022JPNewDecoder() transform.Transformer {
return new(iso2022JPDecoder)
}
func iso2022JPNewEncoder() transform.Transformer {
return new(iso2022JPEncoder)
}
const (
asciiState = iota
katakanaState
jis0208State
jis0212State
)
const asciiEsc = 0x1b
type iso2022JPDecoder int
func (d *iso2022JPDecoder) Reset() {
*d = asciiState
}
func (d *iso2022JPDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
for ; nSrc < len(src); nSrc += size {
c0 := src[nSrc]
if c0 >= utf8.RuneSelf {
r, size = '\ufffd', 1
goto write
}
if c0 == asciiEsc {
if nSrc+2 >= len(src) {
if !atEOF {
return nDst, nSrc, transform.ErrShortSrc
}
// TODO: is it correct to only skip 1??
r, size = '\ufffd', 1
goto write
}
size = 3
c1 := src[nSrc+1]
c2 := src[nSrc+2]
switch {
case c1 == '$' && (c2 == '@' || c2 == 'B'): // 0x24 {0x40, 0x42}
*d = jis0208State
continue
case c1 == '$' && c2 == '(': // 0x24 0x28
if nSrc+3 >= len(src) {
if !atEOF {
return nDst, nSrc, transform.ErrShortSrc
}
r, size = '\ufffd', 1
goto write
}
size = 4
if src[nSrc+3] == 'D' {
*d = jis0212State
continue
}
case c1 == '(' && (c2 == 'B' || c2 == 'J'): // 0x28 {0x42, 0x4A}
*d = asciiState
continue
case c1 == '(' && c2 == 'I': // 0x28 0x49
*d = katakanaState
continue
}
r, size = '\ufffd', 1
goto write
}
switch *d {
case asciiState:
r, size = rune(c0), 1
case katakanaState:
if c0 < 0x21 || 0x60 <= c0 {
r, size = '\ufffd', 1
goto write
}
r, size = rune(c0)+(0xff61-0x21), 1
default:
if c0 == 0x0a {
*d = asciiState
r, size = rune(c0), 1
goto write
}
if nSrc+1 >= len(src) {
if !atEOF {
return nDst, nSrc, transform.ErrShortSrc
}
r, size = '\ufffd', 1
goto write
}
size = 2
c1 := src[nSrc+1]
i := int(c0-0x21)*94 + int(c1-0x21)
if *d == jis0208State && i < len(jis0208Decode) {
r = rune(jis0208Decode[i])
} else if *d == jis0212State && i < len(jis0212Decode) {
r = rune(jis0212Decode[i])
} else {
r = '\ufffd'
goto write
}
if r == 0 {
r = '\ufffd'
}
}
write:
if nDst+utf8.RuneLen(r) > len(dst) {
return nDst, nSrc, transform.ErrShortDst
}
nDst += utf8.EncodeRune(dst[nDst:], r)
}
return nDst, nSrc, err
}
type iso2022JPEncoder int
func (e *iso2022JPEncoder) Reset() {
*e = asciiState
}
func (e *iso2022JPEncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
}
// func init checks that the switch covers all tables.
//
// http://encoding.spec.whatwg.org/#iso-2022-jp says that "the index jis0212
// is not used by the iso-2022-jp encoder due to lack of widespread support".
//
// TODO: do we have to special-case U+00A5 and U+203E, as per
// http://encoding.spec.whatwg.org/#iso-2022-jp
// Doing so would mean that "\u00a5" would not be preserved
// after an encode-decode round trip.
switch {
case encode0Low <= r && r < encode0High:
if r = rune(encode0[r-encode0Low]); r>>tableShift == jis0208 {
goto writeJIS
}
case encode1Low <= r && r < encode1High:
if r = rune(encode1[r-encode1Low]); r>>tableShift == jis0208 {
goto writeJIS
}
case encode2Low <= r && r < encode2High:
if r = rune(encode2[r-encode2Low]); r>>tableShift == jis0208 {
goto writeJIS
}
case encode3Low <= r && r < encode3High:
if r = rune(encode3[r-encode3Low]); r>>tableShift == jis0208 {
goto writeJIS
}
case encode4Low <= r && r < encode4High:
if r = rune(encode4[r-encode4Low]); r>>tableShift == jis0208 {
goto writeJIS
}
case encode5Low <= r && r < encode5High:
if 0xff61 <= r && r < 0xffa0 {
goto writeKatakana
}
if r = rune(encode5[r-encode5Low]); r>>tableShift == jis0208 {
goto writeJIS
}
}
// Switch back to ASCII state in case of error so that an ASCII
// replacement character can be written in the correct state.
if *e != asciiState {
if nDst+3 > len(dst) {
err = transform.ErrShortDst
break
}
*e = asciiState
dst[nDst+0] = asciiEsc
dst[nDst+1] = '('
dst[nDst+2] = 'B'
nDst += 3
}
err = internal.ErrASCIIReplacement
break
}
if *e != asciiState {
if nDst+4 > len(dst) {
err = transform.ErrShortDst
break
}
*e = asciiState
dst[nDst+0] = asciiEsc
dst[nDst+1] = '('
dst[nDst+2] = 'B'
nDst += 3
} else if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r)
nDst++
continue
writeJIS:
if *e != jis0208State {
if nDst+5 > len(dst) {
err = transform.ErrShortDst
break
}
*e = jis0208State
dst[nDst+0] = asciiEsc
dst[nDst+1] = '$'
dst[nDst+2] = 'B'
nDst += 3
} else if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = 0x21 + uint8(r>>codeShift)&codeMask
dst[nDst+1] = 0x21 + uint8(r)&codeMask
nDst += 2
continue
writeKatakana:
if *e != katakanaState {
if nDst+4 > len(dst) {
err = transform.ErrShortDst
break
}
*e = katakanaState
dst[nDst+0] = asciiEsc
dst[nDst+1] = '('
dst[nDst+2] = 'I'
nDst += 3
} else if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r - (0xff61 - 0x21))
nDst++
continue
}
if atEOF && err == nil && *e != asciiState {
if nDst+3 > len(dst) {
err = transform.ErrShortDst
} else {
*e = asciiState
dst[nDst+0] = asciiEsc
dst[nDst+1] = '('
dst[nDst+2] = 'B'
nDst += 3
}
}
return nDst, nSrc, err
}

@ -0,0 +1,189 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package japanese
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// ShiftJIS is the Shift JIS encoding, also known as Code Page 932 and
// Windows-31J.
var ShiftJIS encoding.Encoding = &shiftJIS
var shiftJIS = internal.Encoding{
&internal.SimpleEncoding{shiftJISDecoder{}, shiftJISEncoder{}},
"Shift JIS",
identifier.ShiftJIS,
}
type shiftJISDecoder struct{ transform.NopResetter }
func (shiftJISDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
loop:
for ; nSrc < len(src); nSrc += size {
switch c0 := src[nSrc]; {
case c0 < utf8.RuneSelf:
r, size = rune(c0), 1
case 0xa1 <= c0 && c0 < 0xe0:
r, size = rune(c0)+(0xff61-0xa1), 1
case (0x81 <= c0 && c0 < 0xa0) || (0xe0 <= c0 && c0 < 0xfd):
if c0 <= 0x9f {
c0 -= 0x70
} else {
c0 -= 0xb0
}
c0 = 2*c0 - 0x21
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = '\ufffd', 1
goto write
}
c1 := src[nSrc+1]
switch {
case c1 < 0x40:
r, size = '\ufffd', 1 // c1 is ASCII so output on next round
goto write
case c1 < 0x7f:
c0--
c1 -= 0x40
case c1 == 0x7f:
r, size = '\ufffd', 1 // c1 is ASCII so output on next round
goto write
case c1 < 0x9f:
c0--
c1 -= 0x41
case c1 < 0xfd:
c1 -= 0x9f
default:
r, size = '\ufffd', 2
goto write
}
r, size = '\ufffd', 2
if i := int(c0)*94 + int(c1); i < len(jis0208Decode) {
r = rune(jis0208Decode[i])
if r == 0 {
r = '\ufffd'
}
}
case c0 == 0x80:
r, size = 0x80, 1
default:
r, size = '\ufffd', 1
}
write:
if nDst+utf8.RuneLen(r) > len(dst) {
err = transform.ErrShortDst
break loop
}
nDst += utf8.EncodeRune(dst[nDst:], r)
}
return nDst, nSrc, err
}
type shiftJISEncoder struct{ transform.NopResetter }
func (shiftJISEncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
loop:
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break loop
}
}
// func init checks that the switch covers all tables.
switch {
case encode0Low <= r && r < encode0High:
if r = rune(encode0[r-encode0Low]); r>>tableShift == jis0208 {
goto write2
}
case encode1Low <= r && r < encode1High:
if r = rune(encode1[r-encode1Low]); r>>tableShift == jis0208 {
goto write2
}
case encode2Low <= r && r < encode2High:
if r = rune(encode2[r-encode2Low]); r>>tableShift == jis0208 {
goto write2
}
case encode3Low <= r && r < encode3High:
if r = rune(encode3[r-encode3Low]); r>>tableShift == jis0208 {
goto write2
}
case encode4Low <= r && r < encode4High:
if r = rune(encode4[r-encode4Low]); r>>tableShift == jis0208 {
goto write2
}
case encode5Low <= r && r < encode5High:
if 0xff61 <= r && r < 0xffa0 {
r -= 0xff61 - 0xa1
goto write1
}
if r = rune(encode5[r-encode5Low]); r>>tableShift == jis0208 {
goto write2
}
}
err = internal.ErrASCIIReplacement
break
}
write1:
if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r)
nDst++
continue
write2:
j1 := uint8(r>>codeShift) & codeMask
j2 := uint8(r) & codeMask
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break loop
}
if j1 <= 61 {
dst[nDst+0] = 129 + j1/2
} else {
dst[nDst+0] = 193 + j1/2
}
if j1&1 == 0 {
dst[nDst+1] = j2 + j2/63 + 64
} else {
dst[nDst+1] = j2 + 159
}
nDst += 2
continue
}
return nDst, nSrc, err
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,177 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package korean
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// All is a list of all defined encodings in this package.
var All = []encoding.Encoding{EUCKR}
// EUCKR is the EUC-KR encoding, also known as Code Page 949.
var EUCKR encoding.Encoding = &eucKR
var eucKR = internal.Encoding{
&internal.SimpleEncoding{eucKRDecoder{}, eucKREncoder{}},
"EUC-KR",
identifier.EUCKR,
}
type eucKRDecoder struct{ transform.NopResetter }
func (eucKRDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
loop:
for ; nSrc < len(src); nSrc += size {
switch c0 := src[nSrc]; {
case c0 < utf8.RuneSelf:
r, size = rune(c0), 1
case 0x81 <= c0 && c0 < 0xff:
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
break
}
c1 := src[nSrc+1]
size = 2
if c0 < 0xc7 {
r = 178 * rune(c0-0x81)
switch {
case 0x41 <= c1 && c1 < 0x5b:
r += rune(c1) - (0x41 - 0*26)
case 0x61 <= c1 && c1 < 0x7b:
r += rune(c1) - (0x61 - 1*26)
case 0x81 <= c1 && c1 < 0xff:
r += rune(c1) - (0x81 - 2*26)
default:
goto decError
}
} else if 0xa1 <= c1 && c1 < 0xff {
r = 178*(0xc7-0x81) + rune(c0-0xc7)*94 + rune(c1-0xa1)
} else {
goto decError
}
if int(r) < len(decode) {
r = rune(decode[r])
if r != 0 {
break
}
}
decError:
r = utf8.RuneError
if c1 < utf8.RuneSelf {
size = 1
}
default:
r, size = utf8.RuneError, 1
break
}
if nDst+utf8.RuneLen(r) > len(dst) {
err = transform.ErrShortDst
break
}
nDst += utf8.EncodeRune(dst[nDst:], r)
}
return nDst, nSrc, err
}
type eucKREncoder struct{ transform.NopResetter }
func (eucKREncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r)
nDst++
continue
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
}
// func init checks that the switch covers all tables.
switch {
case encode0Low <= r && r < encode0High:
if r = rune(encode0[r-encode0Low]); r != 0 {
goto write2
}
case encode1Low <= r && r < encode1High:
if r = rune(encode1[r-encode1Low]); r != 0 {
goto write2
}
case encode2Low <= r && r < encode2High:
if r = rune(encode2[r-encode2Low]); r != 0 {
goto write2
}
case encode3Low <= r && r < encode3High:
if r = rune(encode3[r-encode3Low]); r != 0 {
goto write2
}
case encode4Low <= r && r < encode4High:
if r = rune(encode4[r-encode4Low]); r != 0 {
goto write2
}
case encode5Low <= r && r < encode5High:
if r = rune(encode5[r-encode5Low]); r != 0 {
goto write2
}
case encode6Low <= r && r < encode6High:
if r = rune(encode6[r-encode6Low]); r != 0 {
goto write2
}
}
err = internal.ErrASCIIReplacement
break
}
write2:
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = uint8(r >> 8)
dst[nDst+1] = uint8(r)
nDst += 2
continue
}
return nDst, nSrc, err
}
func init() {
// Check that the hard-coded encode switch covers all tables.
if numEncodeTables != 7 {
panic("bad numEncodeTables")
}
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,12 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simplifiedchinese
import (
"golang.org/x/text/encoding"
)
// All is a list of all defined encodings in this package.
var All = []encoding.Encoding{GB18030, GBK, HZGB2312}

@ -0,0 +1,269 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simplifiedchinese
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
var (
// GB18030 is the GB18030 encoding.
GB18030 encoding.Encoding = &gbk18030
// GBK is the GBK encoding. It encodes an extension of the GB2312 character set
// and is also known as Code Page 936.
GBK encoding.Encoding = &gbk
)
var gbk = internal.Encoding{
&internal.SimpleEncoding{
gbkDecoder{gb18030: false},
gbkEncoder{gb18030: false},
},
"GBK",
identifier.GBK,
}
var gbk18030 = internal.Encoding{
&internal.SimpleEncoding{
gbkDecoder{gb18030: true},
gbkEncoder{gb18030: true},
},
"GB18030",
identifier.GB18030,
}
type gbkDecoder struct {
transform.NopResetter
gb18030 bool
}
func (d gbkDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
loop:
for ; nSrc < len(src); nSrc += size {
switch c0 := src[nSrc]; {
case c0 < utf8.RuneSelf:
r, size = rune(c0), 1
// Microsoft's Code Page 936 extends GBK 1.0 to encode the euro sign U+20AC
// as 0x80. The HTML5 specification at http://encoding.spec.whatwg.org/#gbk
// says to treat "gbk" as Code Page 936.
case c0 == 0x80:
r, size = '€', 1
case c0 < 0xff:
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
goto write
}
c1 := src[nSrc+1]
switch {
case 0x40 <= c1 && c1 < 0x7f:
c1 -= 0x40
case 0x80 <= c1 && c1 < 0xff:
c1 -= 0x41
case d.gb18030 && 0x30 <= c1 && c1 < 0x40:
if nSrc+3 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
// The second byte here is always ASCII, so we can set size
// to 1 in all cases.
r, size = utf8.RuneError, 1
goto write
}
c2 := src[nSrc+2]
if c2 < 0x81 || 0xff <= c2 {
r, size = utf8.RuneError, 1
goto write
}
c3 := src[nSrc+3]
if c3 < 0x30 || 0x3a <= c3 {
r, size = utf8.RuneError, 1
goto write
}
size = 4
r = ((rune(c0-0x81)*10+rune(c1-0x30))*126+rune(c2-0x81))*10 + rune(c3-0x30)
if r < 39420 {
i, j := 0, len(gb18030)
for i < j {
h := i + (j-i)/2
if r >= rune(gb18030[h][0]) {
i = h + 1
} else {
j = h
}
}
dec := &gb18030[i-1]
r += rune(dec[1]) - rune(dec[0])
goto write
}
r -= 189000
if 0 <= r && r < 0x100000 {
r += 0x10000
} else {
r, size = utf8.RuneError, 1
}
goto write
default:
r, size = utf8.RuneError, 1
goto write
}
r, size = '\ufffd', 2
if i := int(c0-0x81)*190 + int(c1); i < len(decode) {
r = rune(decode[i])
if r == 0 {
r = '\ufffd'
}
}
default:
r, size = utf8.RuneError, 1
}
write:
if nDst+utf8.RuneLen(r) > len(dst) {
err = transform.ErrShortDst
break loop
}
nDst += utf8.EncodeRune(dst[nDst:], r)
}
return nDst, nSrc, err
}
type gbkEncoder struct {
transform.NopResetter
gb18030 bool
}
func (e gbkEncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, r2, size := rune(0), rune(0), 0
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
}
// func init checks that the switch covers all tables.
switch {
case encode0Low <= r && r < encode0High:
if r2 = rune(encode0[r-encode0Low]); r2 != 0 {
goto write2
}
case encode1Low <= r && r < encode1High:
// Microsoft's Code Page 936 extends GBK 1.0 to encode the euro sign U+20AC
// as 0x80. The HTML5 specification at http://encoding.spec.whatwg.org/#gbk
// says to treat "gbk" as Code Page 936.
if r == '€' {
r = 0x80
goto write1
}
if r2 = rune(encode1[r-encode1Low]); r2 != 0 {
goto write2
}
case encode2Low <= r && r < encode2High:
if r2 = rune(encode2[r-encode2Low]); r2 != 0 {
goto write2
}
case encode3Low <= r && r < encode3High:
if r2 = rune(encode3[r-encode3Low]); r2 != 0 {
goto write2
}
case encode4Low <= r && r < encode4High:
if r2 = rune(encode4[r-encode4Low]); r2 != 0 {
goto write2
}
}
if e.gb18030 {
if r < 0x10000 {
i, j := 0, len(gb18030)
for i < j {
h := i + (j-i)/2
if r >= rune(gb18030[h][1]) {
i = h + 1
} else {
j = h
}
}
dec := &gb18030[i-1]
r += rune(dec[0]) - rune(dec[1])
goto write4
} else if r < 0x110000 {
r += 189000 - 0x10000
goto write4
}
}
err = internal.ErrASCIIReplacement
break
}
write1:
if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r)
nDst++
continue
write2:
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = uint8(r2 >> 8)
dst[nDst+1] = uint8(r2)
nDst += 2
continue
write4:
if nDst+4 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+3] = uint8(r%10 + 0x30)
r /= 10
dst[nDst+2] = uint8(r%126 + 0x81)
r /= 126
dst[nDst+1] = uint8(r%10 + 0x30)
r /= 10
dst[nDst+0] = uint8(r + 0x81)
nDst += 4
continue
}
return nDst, nSrc, err
}
func init() {
// Check that the hard-coded encode switch covers all tables.
if numEncodeTables != 5 {
panic("bad numEncodeTables")
}
}

@ -0,0 +1,245 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simplifiedchinese
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// HZGB2312 is the HZ-GB2312 encoding.
var HZGB2312 encoding.Encoding = &hzGB2312
var hzGB2312 = internal.Encoding{
internal.FuncEncoding{hzGB2312NewDecoder, hzGB2312NewEncoder},
"HZ-GB2312",
identifier.HZGB2312,
}
func hzGB2312NewDecoder() transform.Transformer {
return new(hzGB2312Decoder)
}
func hzGB2312NewEncoder() transform.Transformer {
return new(hzGB2312Encoder)
}
const (
asciiState = iota
gbState
)
type hzGB2312Decoder int
func (d *hzGB2312Decoder) Reset() {
*d = asciiState
}
func (d *hzGB2312Decoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
loop:
for ; nSrc < len(src); nSrc += size {
c0 := src[nSrc]
if c0 >= utf8.RuneSelf {
r, size = utf8.RuneError, 1
goto write
}
if c0 == '~' {
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
goto write
}
size = 2
switch src[nSrc+1] {
case '{':
*d = gbState
continue
case '}':
*d = asciiState
continue
case '~':
if nDst >= len(dst) {
err = transform.ErrShortDst
break loop
}
dst[nDst] = '~'
nDst++
continue
case '\n':
continue
default:
r = utf8.RuneError
goto write
}
}
if *d == asciiState {
r, size = rune(c0), 1
} else {
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
goto write
}
size = 2
c1 := src[nSrc+1]
if c0 < 0x21 || 0x7e <= c0 || c1 < 0x21 || 0x7f <= c1 {
// error
} else if i := int(c0-0x01)*190 + int(c1+0x3f); i < len(decode) {
r = rune(decode[i])
if r != 0 {
goto write
}
}
if c1 > utf8.RuneSelf {
// Be consistent and always treat non-ASCII as a single error.
size = 1
}
r = utf8.RuneError
}
write:
if nDst+utf8.RuneLen(r) > len(dst) {
err = transform.ErrShortDst
break loop
}
nDst += utf8.EncodeRune(dst[nDst:], r)
}
return nDst, nSrc, err
}
type hzGB2312Encoder int
func (d *hzGB2312Encoder) Reset() {
*d = asciiState
}
func (e *hzGB2312Encoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
if r == '~' {
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = '~'
dst[nDst+1] = '~'
nDst += 2
continue
} else if *e != asciiState {
if nDst+3 > len(dst) {
err = transform.ErrShortDst
break
}
*e = asciiState
dst[nDst+0] = '~'
dst[nDst+1] = '}'
nDst += 2
} else if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r)
nDst += 1
continue
}
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
}
// func init checks that the switch covers all tables.
switch {
case encode0Low <= r && r < encode0High:
if r = rune(encode0[r-encode0Low]); r != 0 {
goto writeGB
}
case encode1Low <= r && r < encode1High:
if r = rune(encode1[r-encode1Low]); r != 0 {
goto writeGB
}
case encode2Low <= r && r < encode2High:
if r = rune(encode2[r-encode2Low]); r != 0 {
goto writeGB
}
case encode3Low <= r && r < encode3High:
if r = rune(encode3[r-encode3Low]); r != 0 {
goto writeGB
}
case encode4Low <= r && r < encode4High:
if r = rune(encode4[r-encode4Low]); r != 0 {
goto writeGB
}
}
terminateInASCIIState:
// Switch back to ASCII state in case of error so that an ASCII
// replacement character can be written in the correct state.
if *e != asciiState {
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = '~'
dst[nDst+1] = '}'
nDst += 2
}
err = internal.ErrASCIIReplacement
break
writeGB:
c0 := uint8(r>>8) - 0x80
c1 := uint8(r) - 0x80
if c0 < 0x21 || 0x7e <= c0 || c1 < 0x21 || 0x7f <= c1 {
goto terminateInASCIIState
}
if *e == asciiState {
if nDst+4 > len(dst) {
err = transform.ErrShortDst
break
}
*e = gbState
dst[nDst+0] = '~'
dst[nDst+1] = '{'
nDst += 2
} else if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = c0
dst[nDst+1] = c1
nDst += 2
continue
}
// TODO: should one always terminate in ASCII state to make it safe to
// concatenate two HZ-GB2312-encoded strings?
return nDst, nSrc, err
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,199 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package traditionalchinese
import (
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/transform"
)
// All is a list of all defined encodings in this package.
var All = []encoding.Encoding{Big5}
// Big5 is the Big5 encoding, also known as Code Page 950.
var Big5 encoding.Encoding = &big5
var big5 = internal.Encoding{
&internal.SimpleEncoding{big5Decoder{}, big5Encoder{}},
"Big5",
identifier.Big5,
}
type big5Decoder struct{ transform.NopResetter }
func (big5Decoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size, s := rune(0), 0, ""
loop:
for ; nSrc < len(src); nSrc += size {
switch c0 := src[nSrc]; {
case c0 < utf8.RuneSelf:
r, size = rune(c0), 1
case 0x81 <= c0 && c0 < 0xff:
if nSrc+1 >= len(src) {
if !atEOF {
err = transform.ErrShortSrc
break loop
}
r, size = utf8.RuneError, 1
goto write
}
c1 := src[nSrc+1]
switch {
case 0x40 <= c1 && c1 < 0x7f:
c1 -= 0x40
case 0xa1 <= c1 && c1 < 0xff:
c1 -= 0x62
case c1 < 0x40:
r, size = utf8.RuneError, 1
goto write
default:
r, size = utf8.RuneError, 2
goto write
}
r, size = '\ufffd', 2
if i := int(c0-0x81)*157 + int(c1); i < len(decode) {
if 1133 <= i && i < 1167 {
// The two-rune special cases for LATIN CAPITAL / SMALL E WITH CIRCUMFLEX
// AND MACRON / CARON are from http://encoding.spec.whatwg.org/#big5
switch i {
case 1133:
s = "\u00CA\u0304"
goto writeStr
case 1135:
s = "\u00CA\u030C"
goto writeStr
case 1164:
s = "\u00EA\u0304"
goto writeStr
case 1166:
s = "\u00EA\u030C"
goto writeStr
}
}
r = rune(decode[i])
if r == 0 {
r = '\ufffd'
}
}
default:
r, size = utf8.RuneError, 1
}
write:
if nDst+utf8.RuneLen(r) > len(dst) {
err = transform.ErrShortDst
break loop
}
nDst += utf8.EncodeRune(dst[nDst:], r)
continue loop
writeStr:
if nDst+len(s) > len(dst) {
err = transform.ErrShortDst
break loop
}
nDst += copy(dst[nDst:], s)
continue loop
}
return nDst, nSrc, err
}
type big5Encoder struct{ transform.NopResetter }
func (big5Encoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
r, size := rune(0), 0
for ; nSrc < len(src); nSrc += size {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
if nDst >= len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = uint8(r)
nDst++
continue
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
}
}
if r >= utf8.RuneSelf {
// func init checks that the switch covers all tables.
switch {
case encode0Low <= r && r < encode0High:
if r = rune(encode0[r-encode0Low]); r != 0 {
goto write2
}
case encode1Low <= r && r < encode1High:
if r = rune(encode1[r-encode1Low]); r != 0 {
goto write2
}
case encode2Low <= r && r < encode2High:
if r = rune(encode2[r-encode2Low]); r != 0 {
goto write2
}
case encode3Low <= r && r < encode3High:
if r = rune(encode3[r-encode3Low]); r != 0 {
goto write2
}
case encode4Low <= r && r < encode4High:
if r = rune(encode4[r-encode4Low]); r != 0 {
goto write2
}
case encode5Low <= r && r < encode5High:
if r = rune(encode5[r-encode5Low]); r != 0 {
goto write2
}
case encode6Low <= r && r < encode6High:
if r = rune(encode6[r-encode6Low]); r != 0 {
goto write2
}
case encode7Low <= r && r < encode7High:
if r = rune(encode7[r-encode7Low]); r != 0 {
goto write2
}
}
err = internal.ErrASCIIReplacement
break
}
write2:
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = uint8(r >> 8)
dst[nDst+1] = uint8(r)
nDst += 2
continue
}
return nDst, nSrc, err
}
func init() {
// Check that the hard-coded encode switch covers all tables.
if numEncodeTables != 8 {
panic("bad numEncodeTables")
}
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,82 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package unicode
import (
"golang.org/x/text/transform"
)
// BOMOverride returns a new decoder transformer that is identical to fallback,
// except that the presence of a Byte Order Mark at the start of the input
// causes it to switch to the corresponding Unicode decoding. It will only
// consider BOMs for UTF-8, UTF-16BE, and UTF-16LE.
//
// This differs from using ExpectBOM by allowing a BOM to switch to UTF-8, not
// just UTF-16 variants, and allowing falling back to any encoding scheme.
//
// This technique is recommended by the W3C for use in HTML 5: "For
// compatibility with deployed content, the byte order mark (also known as BOM)
// is considered more authoritative than anything else."
// http://www.w3.org/TR/encoding/#specification-hooks
//
// Using BOMOverride is mostly intended for use cases where the first characters
// of a fallback encoding are known to not be a BOM, for example, for valid HTML
// and most encodings.
func BOMOverride(fallback transform.Transformer) transform.Transformer {
// TODO: possibly allow a variadic argument of unicode encodings to allow
// specifying details of which fallbacks are supported as well as
// specifying the details of the implementations. This would also allow for
// support for UTF-32, which should not be supported by default.
return &bomOverride{fallback: fallback}
}
type bomOverride struct {
fallback transform.Transformer
current transform.Transformer
}
func (d *bomOverride) Reset() {
d.current = nil
d.fallback.Reset()
}
var (
// TODO: we could use decode functions here, instead of allocating a new
// decoder on every NewDecoder as IgnoreBOM decoders can be stateless.
utf16le = UTF16(LittleEndian, IgnoreBOM)
utf16be = UTF16(BigEndian, IgnoreBOM)
)
const utf8BOM = "\ufeff"
func (d *bomOverride) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if d.current != nil {
return d.current.Transform(dst, src, atEOF)
}
if len(src) < 3 && !atEOF {
return 0, 0, transform.ErrShortSrc
}
d.current = d.fallback
bomSize := 0
if len(src) >= 2 {
if src[0] == 0xFF && src[1] == 0xFE {
d.current = utf16le.NewDecoder()
bomSize = 2
} else if src[0] == 0xFE && src[1] == 0xFF {
d.current = utf16be.NewDecoder()
bomSize = 2
} else if len(src) >= 3 &&
src[0] == utf8BOM[0] &&
src[1] == utf8BOM[1] &&
src[2] == utf8BOM[2] {
d.current = transform.Nop
bomSize = 3
}
}
if bomSize < len(src) {
nDst, nSrc, err = d.current.Transform(dst, src[bomSize:], atEOF)
}
return nDst, nSrc + bomSize, err
}

@ -0,0 +1,512 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package unicode provides Unicode encodings such as UTF-16.
package unicode // import "golang.org/x/text/encoding/unicode"
import (
"bytes"
"errors"
"unicode/utf16"
"unicode/utf8"
"golang.org/x/text/encoding"
"golang.org/x/text/encoding/internal"
"golang.org/x/text/encoding/internal/identifier"
"golang.org/x/text/internal/utf8internal"
"golang.org/x/text/runes"
"golang.org/x/text/transform"
)
// TODO: I think the Transformers really should return errors on unmatched
// surrogate pairs and odd numbers of bytes. This is not required by RFC 2781,
// which leaves it open, but is suggested by WhatWG. It will allow for all error
// modes as defined by WhatWG: fatal, HTML and Replacement. This would require
// the introduction of some kind of error type for conveying the erroneous code
// point.
// UTF8 is the UTF-8 encoding. It neither removes nor adds byte order marks.
var UTF8 encoding.Encoding = utf8enc
// UTF8BOM is an UTF-8 encoding where the decoder strips a leading byte order
// mark while the encoder adds one.
//
// Some editors add a byte order mark as a signature to UTF-8 files. Although
// the byte order mark is not useful for detecting byte order in UTF-8, it is
// sometimes used as a convention to mark UTF-8-encoded files. This relies on
// the observation that the UTF-8 byte order mark is either an illegal or at
// least very unlikely sequence in any other character encoding.
var UTF8BOM encoding.Encoding = utf8bomEncoding{}
type utf8bomEncoding struct{}
func (utf8bomEncoding) String() string {
return "UTF-8-BOM"
}
func (utf8bomEncoding) ID() (identifier.MIB, string) {
return identifier.Unofficial, "x-utf8bom"
}
func (utf8bomEncoding) NewEncoder() *encoding.Encoder {
return &encoding.Encoder{
Transformer: &utf8bomEncoder{t: runes.ReplaceIllFormed()},
}
}
func (utf8bomEncoding) NewDecoder() *encoding.Decoder {
return &encoding.Decoder{Transformer: &utf8bomDecoder{}}
}
var utf8enc = &internal.Encoding{
&internal.SimpleEncoding{utf8Decoder{}, runes.ReplaceIllFormed()},
"UTF-8",
identifier.UTF8,
}
type utf8bomDecoder struct {
checked bool
}
func (t *utf8bomDecoder) Reset() {
t.checked = false
}
func (t *utf8bomDecoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if !t.checked {
if !atEOF && len(src) < len(utf8BOM) {
if len(src) == 0 {
return 0, 0, nil
}
return 0, 0, transform.ErrShortSrc
}
if bytes.HasPrefix(src, []byte(utf8BOM)) {
nSrc += len(utf8BOM)
src = src[len(utf8BOM):]
}
t.checked = true
}
nDst, n, err := utf8Decoder.Transform(utf8Decoder{}, dst[nDst:], src, atEOF)
nSrc += n
return nDst, nSrc, err
}
type utf8bomEncoder struct {
written bool
t transform.Transformer
}
func (t *utf8bomEncoder) Reset() {
t.written = false
t.t.Reset()
}
func (t *utf8bomEncoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if !t.written {
if len(dst) < len(utf8BOM) {
return nDst, 0, transform.ErrShortDst
}
nDst = copy(dst, utf8BOM)
t.written = true
}
n, nSrc, err := utf8Decoder.Transform(utf8Decoder{}, dst[nDst:], src, atEOF)
nDst += n
return nDst, nSrc, err
}
type utf8Decoder struct{ transform.NopResetter }
func (utf8Decoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
var pSrc int // point from which to start copy in src
var accept utf8internal.AcceptRange
// The decoder can only make the input larger, not smaller.
n := len(src)
if len(dst) < n {
err = transform.ErrShortDst
n = len(dst)
atEOF = false
}
for nSrc < n {
c := src[nSrc]
if c < utf8.RuneSelf {
nSrc++
continue
}
first := utf8internal.First[c]
size := int(first & utf8internal.SizeMask)
if first == utf8internal.FirstInvalid {
goto handleInvalid // invalid starter byte
}
accept = utf8internal.AcceptRanges[first>>utf8internal.AcceptShift]
if nSrc+size > n {
if !atEOF {
// We may stop earlier than necessary here if the short sequence
// has invalid bytes. Not checking for this simplifies the code
// and may avoid duplicate computations in certain conditions.
if err == nil {
err = transform.ErrShortSrc
}
break
}
// Determine the maximal subpart of an ill-formed subsequence.
switch {
case nSrc+1 >= n || src[nSrc+1] < accept.Lo || accept.Hi < src[nSrc+1]:
size = 1
case nSrc+2 >= n || src[nSrc+2] < utf8internal.LoCB || utf8internal.HiCB < src[nSrc+2]:
size = 2
default:
size = 3 // As we are short, the maximum is 3.
}
goto handleInvalid
}
if c = src[nSrc+1]; c < accept.Lo || accept.Hi < c {
size = 1
goto handleInvalid // invalid continuation byte
} else if size == 2 {
} else if c = src[nSrc+2]; c < utf8internal.LoCB || utf8internal.HiCB < c {
size = 2
goto handleInvalid // invalid continuation byte
} else if size == 3 {
} else if c = src[nSrc+3]; c < utf8internal.LoCB || utf8internal.HiCB < c {
size = 3
goto handleInvalid // invalid continuation byte
}
nSrc += size
continue
handleInvalid:
// Copy the scanned input so far.
nDst += copy(dst[nDst:], src[pSrc:nSrc])
// Append RuneError to the destination.
const runeError = "\ufffd"
if nDst+len(runeError) > len(dst) {
return nDst, nSrc, transform.ErrShortDst
}
nDst += copy(dst[nDst:], runeError)
// Skip the maximal subpart of an ill-formed subsequence according to
// the W3C standard way instead of the Go way. This Transform is
// probably the only place in the text repo where it is warranted.
nSrc += size
pSrc = nSrc
// Recompute the maximum source length.
if sz := len(dst) - nDst; sz < len(src)-nSrc {
err = transform.ErrShortDst
n = nSrc + sz
atEOF = false
}
}
return nDst + copy(dst[nDst:], src[pSrc:nSrc]), nSrc, err
}
// UTF16 returns a UTF-16 Encoding for the given default endianness and byte
// order mark (BOM) policy.
//
// When decoding from UTF-16 to UTF-8, if the BOMPolicy is IgnoreBOM then
// neither BOMs U+FEFF nor noncharacters U+FFFE in the input stream will affect
// the endianness used for decoding, and will instead be output as their
// standard UTF-8 encodings: "\xef\xbb\xbf" and "\xef\xbf\xbe". If the BOMPolicy
// is UseBOM or ExpectBOM a staring BOM is not written to the UTF-8 output.
// Instead, it overrides the default endianness e for the remainder of the
// transformation. Any subsequent BOMs U+FEFF or noncharacters U+FFFE will not
// affect the endianness used, and will instead be output as their standard
// UTF-8 encodings. For UseBOM, if there is no starting BOM, it will proceed
// with the default Endianness. For ExpectBOM, in that case, the transformation
// will return early with an ErrMissingBOM error.
//
// When encoding from UTF-8 to UTF-16, a BOM will be inserted at the start of
// the output if the BOMPolicy is UseBOM or ExpectBOM. Otherwise, a BOM will not
// be inserted. The UTF-8 input does not need to contain a BOM.
//
// There is no concept of a 'native' endianness. If the UTF-16 data is produced
// and consumed in a greater context that implies a certain endianness, use
// IgnoreBOM. Otherwise, use ExpectBOM and always produce and consume a BOM.
//
// In the language of https://www.unicode.org/faq/utf_bom.html#bom10, IgnoreBOM
// corresponds to "Where the precise type of the data stream is known... the
// BOM should not be used" and ExpectBOM corresponds to "A particular
// protocol... may require use of the BOM".
func UTF16(e Endianness, b BOMPolicy) encoding.Encoding {
return utf16Encoding{config{e, b}, mibValue[e][b&bomMask]}
}
// mibValue maps Endianness and BOMPolicy settings to MIB constants. Note that
// some configurations map to the same MIB identifier. RFC 2781 has requirements
// and recommendations. Some of the "configurations" are merely recommendations,
// so multiple configurations could match.
var mibValue = map[Endianness][numBOMValues]identifier.MIB{
BigEndian: [numBOMValues]identifier.MIB{
IgnoreBOM: identifier.UTF16BE,
UseBOM: identifier.UTF16, // BigEnding default is preferred by RFC 2781.
// TODO: acceptBOM | strictBOM would map to UTF16BE as well.
},
LittleEndian: [numBOMValues]identifier.MIB{
IgnoreBOM: identifier.UTF16LE,
UseBOM: identifier.UTF16, // LittleEndian default is allowed and preferred on Windows.
// TODO: acceptBOM | strictBOM would map to UTF16LE as well.
},
// ExpectBOM is not widely used and has no valid MIB identifier.
}
// All lists a configuration for each IANA-defined UTF-16 variant.
var All = []encoding.Encoding{
UTF8,
UTF16(BigEndian, UseBOM),
UTF16(BigEndian, IgnoreBOM),
UTF16(LittleEndian, IgnoreBOM),
}
// BOMPolicy is a UTF-16 encoding's byte order mark policy.
type BOMPolicy uint8
const (
writeBOM BOMPolicy = 0x01
acceptBOM BOMPolicy = 0x02
requireBOM BOMPolicy = 0x04
bomMask BOMPolicy = 0x07
// HACK: numBOMValues == 8 triggers a bug in the 1.4 compiler (cannot have a
// map of an array of length 8 of a type that is also used as a key or value
// in another map). See golang.org/issue/11354.
// TODO: consider changing this value back to 8 if the use of 1.4.* has
// been minimized.
numBOMValues = 8 + 1
// IgnoreBOM means to ignore any byte order marks.
IgnoreBOM BOMPolicy = 0
// Common and RFC 2781-compliant interpretation for UTF-16BE/LE.
// UseBOM means that the UTF-16 form may start with a byte order mark, which
// will be used to override the default encoding.
UseBOM BOMPolicy = writeBOM | acceptBOM
// Common and RFC 2781-compliant interpretation for UTF-16.
// ExpectBOM means that the UTF-16 form must start with a byte order mark,
// which will be used to override the default encoding.
ExpectBOM BOMPolicy = writeBOM | acceptBOM | requireBOM
// Used in Java as Unicode (not to be confused with Java's UTF-16) and
// ICU's UTF-16,version=1. Not compliant with RFC 2781.
// TODO (maybe): strictBOM: BOM must match Endianness. This would allow:
// - UTF-16(B|L)E,version=1: writeBOM | acceptBOM | requireBOM | strictBOM
// (UnicodeBig and UnicodeLittle in Java)
// - RFC 2781-compliant, but less common interpretation for UTF-16(B|L)E:
// acceptBOM | strictBOM (e.g. assigned to CheckBOM).
// This addition would be consistent with supporting ExpectBOM.
)
// Endianness is a UTF-16 encoding's default endianness.
type Endianness bool
const (
// BigEndian is UTF-16BE.
BigEndian Endianness = false
// LittleEndian is UTF-16LE.
LittleEndian Endianness = true
)
// ErrMissingBOM means that decoding UTF-16 input with ExpectBOM did not find a
// starting byte order mark.
var ErrMissingBOM = errors.New("encoding: missing byte order mark")
type utf16Encoding struct {
config
mib identifier.MIB
}
type config struct {
endianness Endianness
bomPolicy BOMPolicy
}
func (u utf16Encoding) NewDecoder() *encoding.Decoder {
return &encoding.Decoder{Transformer: &utf16Decoder{
initial: u.config,
current: u.config,
}}
}
func (u utf16Encoding) NewEncoder() *encoding.Encoder {
return &encoding.Encoder{Transformer: &utf16Encoder{
endianness: u.endianness,
initialBOMPolicy: u.bomPolicy,
currentBOMPolicy: u.bomPolicy,
}}
}
func (u utf16Encoding) ID() (mib identifier.MIB, other string) {
return u.mib, ""
}
func (u utf16Encoding) String() string {
e, b := "B", ""
if u.endianness == LittleEndian {
e = "L"
}
switch u.bomPolicy {
case ExpectBOM:
b = "Expect"
case UseBOM:
b = "Use"
case IgnoreBOM:
b = "Ignore"
}
return "UTF-16" + e + "E (" + b + " BOM)"
}
type utf16Decoder struct {
initial config
current config
}
func (u *utf16Decoder) Reset() {
u.current = u.initial
}
func (u *utf16Decoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if len(src) < 2 && atEOF && u.current.bomPolicy&requireBOM != 0 {
return 0, 0, ErrMissingBOM
}
if len(src) == 0 {
return 0, 0, nil
}
if len(src) >= 2 && u.current.bomPolicy&acceptBOM != 0 {
switch {
case src[0] == 0xfe && src[1] == 0xff:
u.current.endianness = BigEndian
nSrc = 2
case src[0] == 0xff && src[1] == 0xfe:
u.current.endianness = LittleEndian
nSrc = 2
default:
if u.current.bomPolicy&requireBOM != 0 {
return 0, 0, ErrMissingBOM
}
}
u.current.bomPolicy = IgnoreBOM
}
var r rune
var dSize, sSize int
for nSrc < len(src) {
if nSrc+1 < len(src) {
x := uint16(src[nSrc+0])<<8 | uint16(src[nSrc+1])
if u.current.endianness == LittleEndian {
x = x>>8 | x<<8
}
r, sSize = rune(x), 2
if utf16.IsSurrogate(r) {
if nSrc+3 < len(src) {
x = uint16(src[nSrc+2])<<8 | uint16(src[nSrc+3])
if u.current.endianness == LittleEndian {
x = x>>8 | x<<8
}
// Save for next iteration if it is not a high surrogate.
if isHighSurrogate(rune(x)) {
r, sSize = utf16.DecodeRune(r, rune(x)), 4
}
} else if !atEOF {
err = transform.ErrShortSrc
break
}
}
if dSize = utf8.RuneLen(r); dSize < 0 {
r, dSize = utf8.RuneError, 3
}
} else if atEOF {
// Single trailing byte.
r, dSize, sSize = utf8.RuneError, 3, 1
} else {
err = transform.ErrShortSrc
break
}
if nDst+dSize > len(dst) {
err = transform.ErrShortDst
break
}
nDst += utf8.EncodeRune(dst[nDst:], r)
nSrc += sSize
}
return nDst, nSrc, err
}
func isHighSurrogate(r rune) bool {
return 0xDC00 <= r && r <= 0xDFFF
}
type utf16Encoder struct {
endianness Endianness
initialBOMPolicy BOMPolicy
currentBOMPolicy BOMPolicy
}
func (u *utf16Encoder) Reset() {
u.currentBOMPolicy = u.initialBOMPolicy
}
func (u *utf16Encoder) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
if u.currentBOMPolicy&writeBOM != 0 {
if len(dst) < 2 {
return 0, 0, transform.ErrShortDst
}
dst[0], dst[1] = 0xfe, 0xff
u.currentBOMPolicy = IgnoreBOM
nDst = 2
}
r, size := rune(0), 0
for nSrc < len(src) {
r = rune(src[nSrc])
// Decode a 1-byte rune.
if r < utf8.RuneSelf {
size = 1
} else {
// Decode a multi-byte rune.
r, size = utf8.DecodeRune(src[nSrc:])
if size == 1 {
// All valid runes of size 1 (those below utf8.RuneSelf) were
// handled above. We have invalid UTF-8 or we haven't seen the
// full character yet.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
}
}
if r <= 0xffff {
if nDst+2 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = uint8(r >> 8)
dst[nDst+1] = uint8(r)
nDst += 2
} else {
if nDst+4 > len(dst) {
err = transform.ErrShortDst
break
}
r1, r2 := utf16.EncodeRune(r)
dst[nDst+0] = uint8(r1 >> 8)
dst[nDst+1] = uint8(r1)
dst[nDst+2] = uint8(r2 >> 8)
dst[nDst+3] = uint8(r2)
nDst += 4
}
nSrc += size
}
if u.endianness == LittleEndian {
for i := 0; i < nDst; i += 2 {
dst[i], dst[i+1] = dst[i+1], dst[i]
}
}
return nDst, nSrc, err
}

@ -0,0 +1,16 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package language
// This file contains code common to the maketables.go and the package code.
// AliasType is the type of an alias in AliasMap.
type AliasType int8
const (
Deprecated AliasType = iota
Macro
Legacy
AliasTypeUnknown AliasType = -1
)

@ -0,0 +1,29 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
// CompactCoreInfo is a compact integer with the three core tags encoded.
type CompactCoreInfo uint32
// GetCompactCore generates a uint32 value that is guaranteed to be unique for
// different language, region, and script values.
func GetCompactCore(t Tag) (cci CompactCoreInfo, ok bool) {
if t.LangID > langNoIndexOffset {
return 0, false
}
cci |= CompactCoreInfo(t.LangID) << (8 + 12)
cci |= CompactCoreInfo(t.ScriptID) << 12
cci |= CompactCoreInfo(t.RegionID)
return cci, true
}
// Tag generates a tag from c.
func (c CompactCoreInfo) Tag() Tag {
return Tag{
LangID: Language(c >> 20),
RegionID: Region(c & 0x3ff),
ScriptID: Script(c>>12) & 0xff,
}
}

@ -0,0 +1,61 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package compact defines a compact representation of language tags.
//
// Common language tags (at least all for which locale information is defined
// in CLDR) are assigned a unique index. Each Tag is associated with such an
// ID for selecting language-related resources (such as translations) as well
// as one for selecting regional defaults (currency, number formatting, etc.)
//
// It may want to export this functionality at some point, but at this point
// this is only available for use within x/text.
package compact // import "golang.org/x/text/internal/language/compact"
import (
"sort"
"strings"
"golang.org/x/text/internal/language"
)
// ID is an integer identifying a single tag.
type ID uint16
func getCoreIndex(t language.Tag) (id ID, ok bool) {
cci, ok := language.GetCompactCore(t)
if !ok {
return 0, false
}
i := sort.Search(len(coreTags), func(i int) bool {
return cci <= coreTags[i]
})
if i == len(coreTags) || coreTags[i] != cci {
return 0, false
}
return ID(i), true
}
// Parent returns the ID of the parent or the root ID if id is already the root.
func (id ID) Parent() ID {
return parents[id]
}
// Tag converts id to an internal language Tag.
func (id ID) Tag() language.Tag {
if int(id) >= len(coreTags) {
return specialTags[int(id)-len(coreTags)]
}
return coreTags[id].Tag()
}
var specialTags []language.Tag
func init() {
tags := strings.Split(specialTagsStr, " ")
specialTags = make([]language.Tag, len(tags))
for i, t := range tags {
specialTags[i] = language.MustParse(t)
}
}

@ -0,0 +1,260 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_index.go -output tables.go
//go:generate go run gen_parents.go
package compact
// TODO: Remove above NOTE after:
// - verifying that tables are dropped correctly (most notably matcher tables).
import (
"strings"
"golang.org/x/text/internal/language"
)
// Tag represents a BCP 47 language tag. It is used to specify an instance of a
// specific language or locale. All language tag values are guaranteed to be
// well-formed.
type Tag struct {
// NOTE: exported tags will become part of the public API.
language ID
locale ID
full fullTag // always a language.Tag for now.
}
const _und = 0
type fullTag interface {
IsRoot() bool
Parent() language.Tag
}
// Make a compact Tag from a fully specified internal language Tag.
func Make(t language.Tag) (tag Tag) {
if region := t.TypeForKey("rg"); len(region) == 6 && region[2:] == "zzzz" {
if r, err := language.ParseRegion(region[:2]); err == nil {
tFull := t
t, _ = t.SetTypeForKey("rg", "")
// TODO: should we not consider "va" for the language tag?
var exact1, exact2 bool
tag.language, exact1 = FromTag(t)
t.RegionID = r
tag.locale, exact2 = FromTag(t)
if !exact1 || !exact2 {
tag.full = tFull
}
return tag
}
}
lang, ok := FromTag(t)
tag.language = lang
tag.locale = lang
if !ok {
tag.full = t
}
return tag
}
// Tag returns an internal language Tag version of this tag.
func (t Tag) Tag() language.Tag {
if t.full != nil {
return t.full.(language.Tag)
}
tag := t.language.Tag()
if t.language != t.locale {
loc := t.locale.Tag()
tag, _ = tag.SetTypeForKey("rg", strings.ToLower(loc.RegionID.String())+"zzzz")
}
return tag
}
// IsCompact reports whether this tag is fully defined in terms of ID.
func (t *Tag) IsCompact() bool {
return t.full == nil
}
// MayHaveVariants reports whether a tag may have variants. If it returns false
// it is guaranteed the tag does not have variants.
func (t Tag) MayHaveVariants() bool {
return t.full != nil || int(t.language) >= len(coreTags)
}
// MayHaveExtensions reports whether a tag may have extensions. If it returns
// false it is guaranteed the tag does not have them.
func (t Tag) MayHaveExtensions() bool {
return t.full != nil ||
int(t.language) >= len(coreTags) ||
t.language != t.locale
}
// IsRoot returns true if t is equal to language "und".
func (t Tag) IsRoot() bool {
if t.full != nil {
return t.full.IsRoot()
}
return t.language == _und
}
// Parent returns the CLDR parent of t. In CLDR, missing fields in data for a
// specific language are substituted with fields from the parent language.
// The parent for a language may change for newer versions of CLDR.
func (t Tag) Parent() Tag {
if t.full != nil {
return Make(t.full.Parent())
}
if t.language != t.locale {
// Simulate stripping -u-rg-xxxxxx
return Tag{language: t.language, locale: t.language}
}
// TODO: use parent lookup table once cycle from internal package is
// removed. Probably by internalizing the table and declaring this fast
// enough.
// lang := compactID(internal.Parent(uint16(t.language)))
lang, _ := FromTag(t.language.Tag().Parent())
return Tag{language: lang, locale: lang}
}
// returns token t and the rest of the string.
func nextToken(s string) (t, tail string) {
p := strings.Index(s[1:], "-")
if p == -1 {
return s[1:], ""
}
p++
return s[1:p], s[p:]
}
// LanguageID returns an index, where 0 <= index < NumCompactTags, for tags
// for which data exists in the text repository.The index will change over time
// and should not be stored in persistent storage. If t does not match a compact
// index, exact will be false and the compact index will be returned for the
// first match after repeatedly taking the Parent of t.
func LanguageID(t Tag) (id ID, exact bool) {
return t.language, t.full == nil
}
// RegionalID returns the ID for the regional variant of this tag. This index is
// used to indicate region-specific overrides, such as default currency, default
// calendar and week data, default time cycle, and default measurement system
// and unit preferences.
//
// For instance, the tag en-GB-u-rg-uszzzz specifies British English with US
// settings for currency, number formatting, etc. The CompactIndex for this tag
// will be that for en-GB, while the RegionalID will be the one corresponding to
// en-US.
func RegionalID(t Tag) (id ID, exact bool) {
return t.locale, t.full == nil
}
// LanguageTag returns t stripped of regional variant indicators.
//
// At the moment this means it is stripped of a regional and variant subtag "rg"
// and "va" in the "u" extension.
func (t Tag) LanguageTag() Tag {
if t.full == nil {
return Tag{language: t.language, locale: t.language}
}
tt := t.Tag()
tt.SetTypeForKey("rg", "")
tt.SetTypeForKey("va", "")
return Make(tt)
}
// RegionalTag returns the regional variant of the tag.
//
// At the moment this means that the region is set from the regional subtag
// "rg" in the "u" extension.
func (t Tag) RegionalTag() Tag {
rt := Tag{language: t.locale, locale: t.locale}
if t.full == nil {
return rt
}
b := language.Builder{}
tag := t.Tag()
// tag, _ = tag.SetTypeForKey("rg", "")
b.SetTag(t.locale.Tag())
if v := tag.Variants(); v != "" {
for _, v := range strings.Split(v, "-") {
b.AddVariant(v)
}
}
for _, e := range tag.Extensions() {
b.AddExt(e)
}
return t
}
// FromTag reports closest matching ID for an internal language Tag.
func FromTag(t language.Tag) (id ID, exact bool) {
// TODO: perhaps give more frequent tags a lower index.
// TODO: we could make the indexes stable. This will excluded some
// possibilities for optimization, so don't do this quite yet.
exact = true
b, s, r := t.Raw()
if t.HasString() {
if t.IsPrivateUse() {
// We have no entries for user-defined tags.
return 0, false
}
hasExtra := false
if t.HasVariants() {
if t.HasExtensions() {
build := language.Builder{}
build.SetTag(language.Tag{LangID: b, ScriptID: s, RegionID: r})
build.AddVariant(t.Variants())
exact = false
t = build.Make()
}
hasExtra = true
} else if _, ok := t.Extension('u'); ok {
// TODO: va may mean something else. Consider not considering it.
// Strip all but the 'va' entry.
old := t
variant := t.TypeForKey("va")
t = language.Tag{LangID: b, ScriptID: s, RegionID: r}
if variant != "" {
t, _ = t.SetTypeForKey("va", variant)
hasExtra = true
}
exact = old == t
} else {
exact = false
}
if hasExtra {
// We have some variants.
for i, s := range specialTags {
if s == t {
return ID(i + len(coreTags)), exact
}
}
exact = false
}
}
if x, ok := getCoreIndex(t); ok {
return x, exact
}
exact = false
if r != 0 && s == 0 {
// Deal with cases where an extra script is inserted for the region.
t, _ := t.Maximize()
if x, ok := getCoreIndex(t); ok {
return x, exact
}
}
for t = t.Parent(); t != root; t = t.Parent() {
// No variants specified: just compare core components.
// The key has the form lllssrrr, where l, s, and r are nibbles for
// respectively the langID, scriptID, and regionID.
if x, ok := getCoreIndex(t); ok {
return x, exact
}
}
return 0, exact
}
var root = language.Tag{}

@ -0,0 +1,120 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package compact
// parents maps a compact index of a tag to the compact index of the parent of
// this tag.
var parents = []ID{ // 775 elements
// Entry 0 - 3F
0x0000, 0x0000, 0x0001, 0x0001, 0x0000, 0x0004, 0x0000, 0x0006,
0x0000, 0x0008, 0x0000, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a,
0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a,
0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a,
0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x0000,
0x0000, 0x0028, 0x0000, 0x002a, 0x0000, 0x002c, 0x0000, 0x0000,
0x002f, 0x002e, 0x002e, 0x0000, 0x0033, 0x0000, 0x0035, 0x0000,
0x0037, 0x0000, 0x0039, 0x0000, 0x003b, 0x0000, 0x0000, 0x003e,
// Entry 40 - 7F
0x0000, 0x0040, 0x0040, 0x0000, 0x0043, 0x0043, 0x0000, 0x0046,
0x0000, 0x0048, 0x0000, 0x0000, 0x004b, 0x004a, 0x004a, 0x0000,
0x004f, 0x004f, 0x004f, 0x004f, 0x0000, 0x0054, 0x0054, 0x0000,
0x0057, 0x0000, 0x0059, 0x0000, 0x005b, 0x0000, 0x005d, 0x005d,
0x0000, 0x0060, 0x0000, 0x0062, 0x0000, 0x0064, 0x0000, 0x0066,
0x0066, 0x0000, 0x0069, 0x0000, 0x006b, 0x006b, 0x006b, 0x006b,
0x006b, 0x006b, 0x006b, 0x0000, 0x0073, 0x0000, 0x0075, 0x0000,
0x0077, 0x0000, 0x0000, 0x007a, 0x0000, 0x007c, 0x0000, 0x007e,
// Entry 80 - BF
0x0000, 0x0080, 0x0080, 0x0000, 0x0083, 0x0083, 0x0000, 0x0086,
0x0087, 0x0087, 0x0087, 0x0086, 0x0088, 0x0087, 0x0087, 0x0087,
0x0086, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0088,
0x0087, 0x0087, 0x0087, 0x0087, 0x0088, 0x0087, 0x0088, 0x0087,
0x0087, 0x0088, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0086, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0086, 0x0087, 0x0086,
// Entry C0 - FF
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0088, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0086, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0088, 0x0087,
0x0087, 0x0088, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087,
0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0086, 0x0086, 0x0087,
0x0087, 0x0086, 0x0087, 0x0087, 0x0087, 0x0087, 0x0087, 0x0000,
0x00ef, 0x0000, 0x00f1, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f2,
0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f1, 0x00f2, 0x00f1, 0x00f1,
// Entry 100 - 13F
0x00f2, 0x00f2, 0x00f1, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f1,
0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x00f2, 0x0000, 0x010e,
0x0000, 0x0110, 0x0000, 0x0112, 0x0000, 0x0114, 0x0114, 0x0000,
0x0117, 0x0117, 0x0117, 0x0117, 0x0000, 0x011c, 0x0000, 0x011e,
0x0000, 0x0120, 0x0120, 0x0000, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
// Entry 140 - 17F
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123, 0x0123,
0x0123, 0x0123, 0x0000, 0x0152, 0x0000, 0x0154, 0x0000, 0x0156,
0x0000, 0x0158, 0x0000, 0x015a, 0x0000, 0x015c, 0x015c, 0x015c,
0x0000, 0x0160, 0x0000, 0x0000, 0x0163, 0x0000, 0x0165, 0x0000,
0x0167, 0x0167, 0x0167, 0x0000, 0x016b, 0x0000, 0x016d, 0x0000,
0x016f, 0x0000, 0x0171, 0x0171, 0x0000, 0x0174, 0x0000, 0x0176,
0x0000, 0x0178, 0x0000, 0x017a, 0x0000, 0x017c, 0x0000, 0x017e,
// Entry 180 - 1BF
0x0000, 0x0000, 0x0000, 0x0182, 0x0000, 0x0184, 0x0184, 0x0184,
0x0184, 0x0000, 0x0000, 0x0000, 0x018b, 0x0000, 0x0000, 0x018e,
0x0000, 0x0000, 0x0191, 0x0000, 0x0000, 0x0000, 0x0195, 0x0000,
0x0197, 0x0000, 0x0000, 0x019a, 0x0000, 0x0000, 0x019d, 0x0000,
0x019f, 0x0000, 0x01a1, 0x0000, 0x01a3, 0x0000, 0x01a5, 0x0000,
0x01a7, 0x0000, 0x01a9, 0x0000, 0x01ab, 0x0000, 0x01ad, 0x0000,
0x01af, 0x0000, 0x01b1, 0x01b1, 0x0000, 0x01b4, 0x0000, 0x01b6,
0x0000, 0x01b8, 0x0000, 0x01ba, 0x0000, 0x01bc, 0x0000, 0x0000,
// Entry 1C0 - 1FF
0x01bf, 0x0000, 0x01c1, 0x0000, 0x01c3, 0x0000, 0x01c5, 0x0000,
0x01c7, 0x0000, 0x01c9, 0x0000, 0x01cb, 0x01cb, 0x01cb, 0x01cb,
0x0000, 0x01d0, 0x0000, 0x01d2, 0x01d2, 0x0000, 0x01d5, 0x0000,
0x01d7, 0x0000, 0x01d9, 0x0000, 0x01db, 0x0000, 0x01dd, 0x0000,
0x01df, 0x01df, 0x0000, 0x01e2, 0x0000, 0x01e4, 0x0000, 0x01e6,
0x0000, 0x01e8, 0x0000, 0x01ea, 0x0000, 0x01ec, 0x0000, 0x01ee,
0x0000, 0x01f0, 0x0000, 0x0000, 0x01f3, 0x0000, 0x01f5, 0x01f5,
0x01f5, 0x0000, 0x01f9, 0x0000, 0x01fb, 0x0000, 0x01fd, 0x0000,
// Entry 200 - 23F
0x01ff, 0x0000, 0x0000, 0x0202, 0x0000, 0x0204, 0x0204, 0x0000,
0x0207, 0x0000, 0x0209, 0x0209, 0x0000, 0x020c, 0x020c, 0x0000,
0x020f, 0x020f, 0x020f, 0x020f, 0x020f, 0x020f, 0x020f, 0x0000,
0x0217, 0x0000, 0x0219, 0x0000, 0x021b, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0221, 0x0000, 0x0000, 0x0224, 0x0000, 0x0226,
0x0226, 0x0000, 0x0229, 0x0000, 0x022b, 0x022b, 0x0000, 0x0000,
0x022f, 0x022e, 0x022e, 0x0000, 0x0000, 0x0234, 0x0000, 0x0236,
0x0000, 0x0238, 0x0000, 0x0244, 0x023a, 0x0244, 0x0244, 0x0244,
// Entry 240 - 27F
0x0244, 0x0244, 0x0244, 0x0244, 0x023a, 0x0244, 0x0244, 0x0000,
0x0247, 0x0247, 0x0247, 0x0000, 0x024b, 0x0000, 0x024d, 0x0000,
0x024f, 0x024f, 0x0000, 0x0252, 0x0000, 0x0254, 0x0254, 0x0254,
0x0254, 0x0254, 0x0254, 0x0000, 0x025b, 0x0000, 0x025d, 0x0000,
0x025f, 0x0000, 0x0261, 0x0000, 0x0263, 0x0000, 0x0265, 0x0000,
0x0000, 0x0268, 0x0268, 0x0268, 0x0000, 0x026c, 0x0000, 0x026e,
0x0000, 0x0270, 0x0000, 0x0000, 0x0000, 0x0274, 0x0273, 0x0273,
0x0000, 0x0278, 0x0000, 0x027a, 0x0000, 0x027c, 0x0000, 0x0000,
// Entry 280 - 2BF
0x0000, 0x0000, 0x0281, 0x0000, 0x0000, 0x0284, 0x0000, 0x0286,
0x0286, 0x0286, 0x0286, 0x0000, 0x028b, 0x028b, 0x028b, 0x0000,
0x028f, 0x028f, 0x028f, 0x028f, 0x028f, 0x0000, 0x0295, 0x0295,
0x0295, 0x0295, 0x0000, 0x0000, 0x0000, 0x0000, 0x029d, 0x029d,
0x029d, 0x0000, 0x02a1, 0x02a1, 0x02a1, 0x02a1, 0x0000, 0x0000,
0x02a7, 0x02a7, 0x02a7, 0x02a7, 0x0000, 0x02ac, 0x0000, 0x02ae,
0x02ae, 0x0000, 0x02b1, 0x0000, 0x02b3, 0x0000, 0x02b5, 0x02b5,
0x0000, 0x0000, 0x02b9, 0x0000, 0x0000, 0x0000, 0x02bd, 0x0000,
// Entry 2C0 - 2FF
0x02bf, 0x02bf, 0x0000, 0x0000, 0x02c3, 0x0000, 0x02c5, 0x0000,
0x02c7, 0x0000, 0x02c9, 0x0000, 0x02cb, 0x0000, 0x02cd, 0x02cd,
0x0000, 0x0000, 0x02d1, 0x0000, 0x02d3, 0x02d0, 0x02d0, 0x0000,
0x0000, 0x02d8, 0x02d7, 0x02d7, 0x0000, 0x0000, 0x02dd, 0x0000,
0x02df, 0x0000, 0x02e1, 0x0000, 0x0000, 0x02e4, 0x0000, 0x02e6,
0x0000, 0x0000, 0x02e9, 0x0000, 0x02eb, 0x0000, 0x02ed, 0x0000,
0x02ef, 0x02ef, 0x0000, 0x0000, 0x02f3, 0x02f2, 0x02f2, 0x0000,
0x02f7, 0x0000, 0x02f9, 0x02f9, 0x02f9, 0x02f9, 0x02f9, 0x0000,
// Entry 300 - 33F
0x02ff, 0x0300, 0x02ff, 0x0000, 0x0303, 0x0051, 0x00e6,
} // Size: 1574 bytes
// Total table size 1574 bytes (1KiB); checksum: 895AAF0B

File diff suppressed because it is too large Load Diff

@ -0,0 +1,91 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package compact
var (
und = Tag{}
Und Tag = Tag{}
Afrikaans Tag = Tag{language: afIndex, locale: afIndex}
Amharic Tag = Tag{language: amIndex, locale: amIndex}
Arabic Tag = Tag{language: arIndex, locale: arIndex}
ModernStandardArabic Tag = Tag{language: ar001Index, locale: ar001Index}
Azerbaijani Tag = Tag{language: azIndex, locale: azIndex}
Bulgarian Tag = Tag{language: bgIndex, locale: bgIndex}
Bengali Tag = Tag{language: bnIndex, locale: bnIndex}
Catalan Tag = Tag{language: caIndex, locale: caIndex}
Czech Tag = Tag{language: csIndex, locale: csIndex}
Danish Tag = Tag{language: daIndex, locale: daIndex}
German Tag = Tag{language: deIndex, locale: deIndex}
Greek Tag = Tag{language: elIndex, locale: elIndex}
English Tag = Tag{language: enIndex, locale: enIndex}
AmericanEnglish Tag = Tag{language: enUSIndex, locale: enUSIndex}
BritishEnglish Tag = Tag{language: enGBIndex, locale: enGBIndex}
Spanish Tag = Tag{language: esIndex, locale: esIndex}
EuropeanSpanish Tag = Tag{language: esESIndex, locale: esESIndex}
LatinAmericanSpanish Tag = Tag{language: es419Index, locale: es419Index}
Estonian Tag = Tag{language: etIndex, locale: etIndex}
Persian Tag = Tag{language: faIndex, locale: faIndex}
Finnish Tag = Tag{language: fiIndex, locale: fiIndex}
Filipino Tag = Tag{language: filIndex, locale: filIndex}
French Tag = Tag{language: frIndex, locale: frIndex}
CanadianFrench Tag = Tag{language: frCAIndex, locale: frCAIndex}
Gujarati Tag = Tag{language: guIndex, locale: guIndex}
Hebrew Tag = Tag{language: heIndex, locale: heIndex}
Hindi Tag = Tag{language: hiIndex, locale: hiIndex}
Croatian Tag = Tag{language: hrIndex, locale: hrIndex}
Hungarian Tag = Tag{language: huIndex, locale: huIndex}
Armenian Tag = Tag{language: hyIndex, locale: hyIndex}
Indonesian Tag = Tag{language: idIndex, locale: idIndex}
Icelandic Tag = Tag{language: isIndex, locale: isIndex}
Italian Tag = Tag{language: itIndex, locale: itIndex}
Japanese Tag = Tag{language: jaIndex, locale: jaIndex}
Georgian Tag = Tag{language: kaIndex, locale: kaIndex}
Kazakh Tag = Tag{language: kkIndex, locale: kkIndex}
Khmer Tag = Tag{language: kmIndex, locale: kmIndex}
Kannada Tag = Tag{language: knIndex, locale: knIndex}
Korean Tag = Tag{language: koIndex, locale: koIndex}
Kirghiz Tag = Tag{language: kyIndex, locale: kyIndex}
Lao Tag = Tag{language: loIndex, locale: loIndex}
Lithuanian Tag = Tag{language: ltIndex, locale: ltIndex}
Latvian Tag = Tag{language: lvIndex, locale: lvIndex}
Macedonian Tag = Tag{language: mkIndex, locale: mkIndex}
Malayalam Tag = Tag{language: mlIndex, locale: mlIndex}
Mongolian Tag = Tag{language: mnIndex, locale: mnIndex}
Marathi Tag = Tag{language: mrIndex, locale: mrIndex}
Malay Tag = Tag{language: msIndex, locale: msIndex}
Burmese Tag = Tag{language: myIndex, locale: myIndex}
Nepali Tag = Tag{language: neIndex, locale: neIndex}
Dutch Tag = Tag{language: nlIndex, locale: nlIndex}
Norwegian Tag = Tag{language: noIndex, locale: noIndex}
Punjabi Tag = Tag{language: paIndex, locale: paIndex}
Polish Tag = Tag{language: plIndex, locale: plIndex}
Portuguese Tag = Tag{language: ptIndex, locale: ptIndex}
BrazilianPortuguese Tag = Tag{language: ptBRIndex, locale: ptBRIndex}
EuropeanPortuguese Tag = Tag{language: ptPTIndex, locale: ptPTIndex}
Romanian Tag = Tag{language: roIndex, locale: roIndex}
Russian Tag = Tag{language: ruIndex, locale: ruIndex}
Sinhala Tag = Tag{language: siIndex, locale: siIndex}
Slovak Tag = Tag{language: skIndex, locale: skIndex}
Slovenian Tag = Tag{language: slIndex, locale: slIndex}
Albanian Tag = Tag{language: sqIndex, locale: sqIndex}
Serbian Tag = Tag{language: srIndex, locale: srIndex}
SerbianLatin Tag = Tag{language: srLatnIndex, locale: srLatnIndex}
Swedish Tag = Tag{language: svIndex, locale: svIndex}
Swahili Tag = Tag{language: swIndex, locale: swIndex}
Tamil Tag = Tag{language: taIndex, locale: taIndex}
Telugu Tag = Tag{language: teIndex, locale: teIndex}
Thai Tag = Tag{language: thIndex, locale: thIndex}
Turkish Tag = Tag{language: trIndex, locale: trIndex}
Ukrainian Tag = Tag{language: ukIndex, locale: ukIndex}
Urdu Tag = Tag{language: urIndex, locale: urIndex}
Uzbek Tag = Tag{language: uzIndex, locale: uzIndex}
Vietnamese Tag = Tag{language: viIndex, locale: viIndex}
Chinese Tag = Tag{language: zhIndex, locale: zhIndex}
SimplifiedChinese Tag = Tag{language: zhHansIndex, locale: zhHansIndex}
TraditionalChinese Tag = Tag{language: zhHantIndex, locale: zhHantIndex}
Zulu Tag = Tag{language: zuIndex, locale: zuIndex}
)

@ -0,0 +1,167 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"sort"
"strings"
)
// A Builder allows constructing a Tag from individual components.
// Its main user is Compose in the top-level language package.
type Builder struct {
Tag Tag
private string // the x extension
variants []string
extensions []string
}
// Make returns a new Tag from the current settings.
func (b *Builder) Make() Tag {
t := b.Tag
if len(b.extensions) > 0 || len(b.variants) > 0 {
sort.Sort(sortVariants(b.variants))
sort.Strings(b.extensions)
if b.private != "" {
b.extensions = append(b.extensions, b.private)
}
n := maxCoreSize + tokenLen(b.variants...) + tokenLen(b.extensions...)
buf := make([]byte, n)
p := t.genCoreBytes(buf)
t.pVariant = byte(p)
p += appendTokens(buf[p:], b.variants...)
t.pExt = uint16(p)
p += appendTokens(buf[p:], b.extensions...)
t.str = string(buf[:p])
// We may not always need to remake the string, but when or when not
// to do so is rather tricky.
scan := makeScanner(buf[:p])
t, _ = parse(&scan, "")
return t
} else if b.private != "" {
t.str = b.private
t.RemakeString()
}
return t
}
// SetTag copies all the settings from a given Tag. Any previously set values
// are discarded.
func (b *Builder) SetTag(t Tag) {
b.Tag.LangID = t.LangID
b.Tag.RegionID = t.RegionID
b.Tag.ScriptID = t.ScriptID
// TODO: optimize
b.variants = b.variants[:0]
if variants := t.Variants(); variants != "" {
for _, vr := range strings.Split(variants[1:], "-") {
b.variants = append(b.variants, vr)
}
}
b.extensions, b.private = b.extensions[:0], ""
for _, e := range t.Extensions() {
b.AddExt(e)
}
}
// AddExt adds extension e to the tag. e must be a valid extension as returned
// by Tag.Extension. If the extension already exists, it will be discarded,
// except for a -u extension, where non-existing key-type pairs will added.
func (b *Builder) AddExt(e string) {
if e[0] == 'x' {
if b.private == "" {
b.private = e
}
return
}
for i, s := range b.extensions {
if s[0] == e[0] {
if e[0] == 'u' {
b.extensions[i] += e[1:]
}
return
}
}
b.extensions = append(b.extensions, e)
}
// SetExt sets the extension e to the tag. e must be a valid extension as
// returned by Tag.Extension. If the extension already exists, it will be
// overwritten, except for a -u extension, where the individual key-type pairs
// will be set.
func (b *Builder) SetExt(e string) {
if e[0] == 'x' {
b.private = e
return
}
for i, s := range b.extensions {
if s[0] == e[0] {
if e[0] == 'u' {
b.extensions[i] = e + s[1:]
} else {
b.extensions[i] = e
}
return
}
}
b.extensions = append(b.extensions, e)
}
// AddVariant adds any number of variants.
func (b *Builder) AddVariant(v ...string) {
for _, v := range v {
if v != "" {
b.variants = append(b.variants, v)
}
}
}
// ClearVariants removes any variants previously added, including those
// copied from a Tag in SetTag.
func (b *Builder) ClearVariants() {
b.variants = b.variants[:0]
}
// ClearExtensions removes any extensions previously added, including those
// copied from a Tag in SetTag.
func (b *Builder) ClearExtensions() {
b.private = ""
b.extensions = b.extensions[:0]
}
func tokenLen(token ...string) (n int) {
for _, t := range token {
n += len(t) + 1
}
return
}
func appendTokens(b []byte, token ...string) int {
p := 0
for _, t := range token {
b[p] = '-'
copy(b[p+1:], t)
p += 1 + len(t)
}
return p
}
type sortVariants []string
func (s sortVariants) Len() int {
return len(s)
}
func (s sortVariants) Swap(i, j int) {
s[j], s[i] = s[i], s[j]
}
func (s sortVariants) Less(i, j int) bool {
return variantIndex[s[i]] < variantIndex[s[j]]
}

@ -0,0 +1,28 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
// BaseLanguages returns the list of all supported base languages. It generates
// the list by traversing the internal structures.
func BaseLanguages() []Language {
base := make([]Language, 0, NumLanguages)
for i := 0; i < langNoIndexOffset; i++ {
// We included "und" already for the value 0.
if i != nonCanonicalUnd {
base = append(base, Language(i))
}
}
i := langNoIndexOffset
for _, v := range langNoIndex {
for k := 0; k < 8; k++ {
if v&1 == 1 {
base = append(base, Language(i))
}
v >>= 1
i++
}
}
return base
}

@ -0,0 +1,627 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go gen_common.go -output tables.go
package language // import "golang.org/x/text/internal/language"
// TODO: Remove above NOTE after:
// - verifying that tables are dropped correctly (most notably matcher tables).
import (
"errors"
"fmt"
"strings"
)
const (
// maxCoreSize is the maximum size of a BCP 47 tag without variants and
// extensions. Equals max lang (3) + script (4) + max reg (3) + 2 dashes.
maxCoreSize = 12
// max99thPercentileSize is a somewhat arbitrary buffer size that presumably
// is large enough to hold at least 99% of the BCP 47 tags.
max99thPercentileSize = 32
// maxSimpleUExtensionSize is the maximum size of a -u extension with one
// key-type pair. Equals len("-u-") + key (2) + dash + max value (8).
maxSimpleUExtensionSize = 14
)
// Tag represents a BCP 47 language tag. It is used to specify an instance of a
// specific language or locale. All language tag values are guaranteed to be
// well-formed. The zero value of Tag is Und.
type Tag struct {
// TODO: the following fields have the form TagTypeID. This name is chosen
// to allow refactoring the public package without conflicting with its
// Base, Script, and Region methods. Once the transition is fully completed
// the ID can be stripped from the name.
LangID Language
RegionID Region
// TODO: we will soon run out of positions for ScriptID. Idea: instead of
// storing lang, region, and ScriptID codes, store only the compact index and
// have a lookup table from this code to its expansion. This greatly speeds
// up table lookup, speed up common variant cases.
// This will also immediately free up 3 extra bytes. Also, the pVariant
// field can now be moved to the lookup table, as the compact index uniquely
// determines the offset of a possible variant.
ScriptID Script
pVariant byte // offset in str, includes preceding '-'
pExt uint16 // offset of first extension, includes preceding '-'
// str is the string representation of the Tag. It will only be used if the
// tag has variants or extensions.
str string
}
// Make is a convenience wrapper for Parse that omits the error.
// In case of an error, a sensible default is returned.
func Make(s string) Tag {
t, _ := Parse(s)
return t
}
// Raw returns the raw base language, script and region, without making an
// attempt to infer their values.
// TODO: consider removing
func (t Tag) Raw() (b Language, s Script, r Region) {
return t.LangID, t.ScriptID, t.RegionID
}
// equalTags compares language, script and region subtags only.
func (t Tag) equalTags(a Tag) bool {
return t.LangID == a.LangID && t.ScriptID == a.ScriptID && t.RegionID == a.RegionID
}
// IsRoot returns true if t is equal to language "und".
func (t Tag) IsRoot() bool {
if int(t.pVariant) < len(t.str) {
return false
}
return t.equalTags(Und)
}
// IsPrivateUse reports whether the Tag consists solely of an IsPrivateUse use
// tag.
func (t Tag) IsPrivateUse() bool {
return t.str != "" && t.pVariant == 0
}
// RemakeString is used to update t.str in case lang, script or region changed.
// It is assumed that pExt and pVariant still point to the start of the
// respective parts.
func (t *Tag) RemakeString() {
if t.str == "" {
return
}
extra := t.str[t.pVariant:]
if t.pVariant > 0 {
extra = extra[1:]
}
if t.equalTags(Und) && strings.HasPrefix(extra, "x-") {
t.str = extra
t.pVariant = 0
t.pExt = 0
return
}
var buf [max99thPercentileSize]byte // avoid extra memory allocation in most cases.
b := buf[:t.genCoreBytes(buf[:])]
if extra != "" {
diff := len(b) - int(t.pVariant)
b = append(b, '-')
b = append(b, extra...)
t.pVariant = uint8(int(t.pVariant) + diff)
t.pExt = uint16(int(t.pExt) + diff)
} else {
t.pVariant = uint8(len(b))
t.pExt = uint16(len(b))
}
t.str = string(b)
}
// genCoreBytes writes a string for the base languages, script and region tags
// to the given buffer and returns the number of bytes written. It will never
// write more than maxCoreSize bytes.
func (t *Tag) genCoreBytes(buf []byte) int {
n := t.LangID.StringToBuf(buf[:])
if t.ScriptID != 0 {
n += copy(buf[n:], "-")
n += copy(buf[n:], t.ScriptID.String())
}
if t.RegionID != 0 {
n += copy(buf[n:], "-")
n += copy(buf[n:], t.RegionID.String())
}
return n
}
// String returns the canonical string representation of the language tag.
func (t Tag) String() string {
if t.str != "" {
return t.str
}
if t.ScriptID == 0 && t.RegionID == 0 {
return t.LangID.String()
}
buf := [maxCoreSize]byte{}
return string(buf[:t.genCoreBytes(buf[:])])
}
// MarshalText implements encoding.TextMarshaler.
func (t Tag) MarshalText() (text []byte, err error) {
if t.str != "" {
text = append(text, t.str...)
} else if t.ScriptID == 0 && t.RegionID == 0 {
text = append(text, t.LangID.String()...)
} else {
buf := [maxCoreSize]byte{}
text = buf[:t.genCoreBytes(buf[:])]
}
return text, nil
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (t *Tag) UnmarshalText(text []byte) error {
tag, err := Parse(string(text))
*t = tag
return err
}
// Variants returns the part of the tag holding all variants or the empty string
// if there are no variants defined.
func (t Tag) Variants() string {
if t.pVariant == 0 {
return ""
}
return t.str[t.pVariant:t.pExt]
}
// VariantOrPrivateUseTags returns variants or private use tags.
func (t Tag) VariantOrPrivateUseTags() string {
if t.pExt > 0 {
return t.str[t.pVariant:t.pExt]
}
return t.str[t.pVariant:]
}
// HasString reports whether this tag defines more than just the raw
// components.
func (t Tag) HasString() bool {
return t.str != ""
}
// Parent returns the CLDR parent of t. In CLDR, missing fields in data for a
// specific language are substituted with fields from the parent language.
// The parent for a language may change for newer versions of CLDR.
func (t Tag) Parent() Tag {
if t.str != "" {
// Strip the variants and extensions.
b, s, r := t.Raw()
t = Tag{LangID: b, ScriptID: s, RegionID: r}
if t.RegionID == 0 && t.ScriptID != 0 && t.LangID != 0 {
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID == t.ScriptID {
return Tag{LangID: t.LangID}
}
}
return t
}
if t.LangID != 0 {
if t.RegionID != 0 {
maxScript := t.ScriptID
if maxScript == 0 {
max, _ := addTags(t)
maxScript = max.ScriptID
}
for i := range parents {
if Language(parents[i].lang) == t.LangID && Script(parents[i].maxScript) == maxScript {
for _, r := range parents[i].fromRegion {
if Region(r) == t.RegionID {
return Tag{
LangID: t.LangID,
ScriptID: Script(parents[i].script),
RegionID: Region(parents[i].toRegion),
}
}
}
}
}
// Strip the script if it is the default one.
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID != maxScript {
return Tag{LangID: t.LangID, ScriptID: maxScript}
}
return Tag{LangID: t.LangID}
} else if t.ScriptID != 0 {
// The parent for an base-script pair with a non-default script is
// "und" instead of the base language.
base, _ := addTags(Tag{LangID: t.LangID})
if base.ScriptID != t.ScriptID {
return Und
}
return Tag{LangID: t.LangID}
}
}
return Und
}
// ParseExtension parses s as an extension and returns it on success.
func ParseExtension(s string) (ext string, err error) {
defer func() {
if recover() != nil {
ext = ""
err = ErrSyntax
}
}()
scan := makeScannerString(s)
var end int
if n := len(scan.token); n != 1 {
return "", ErrSyntax
}
scan.toLower(0, len(scan.b))
end = parseExtension(&scan)
if end != len(s) {
return "", ErrSyntax
}
return string(scan.b), nil
}
// HasVariants reports whether t has variants.
func (t Tag) HasVariants() bool {
return uint16(t.pVariant) < t.pExt
}
// HasExtensions reports whether t has extensions.
func (t Tag) HasExtensions() bool {
return int(t.pExt) < len(t.str)
}
// Extension returns the extension of type x for tag t. It will return
// false for ok if t does not have the requested extension. The returned
// extension will be invalid in this case.
func (t Tag) Extension(x byte) (ext string, ok bool) {
for i := int(t.pExt); i < len(t.str)-1; {
var ext string
i, ext = getExtension(t.str, i)
if ext[0] == x {
return ext, true
}
}
return "", false
}
// Extensions returns all extensions of t.
func (t Tag) Extensions() []string {
e := []string{}
for i := int(t.pExt); i < len(t.str)-1; {
var ext string
i, ext = getExtension(t.str, i)
e = append(e, ext)
}
return e
}
// TypeForKey returns the type associated with the given key, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// TypeForKey will traverse the inheritance chain to get the correct value.
//
// If there are multiple types associated with a key, only the first will be
// returned. If there is no type associated with a key, it returns the empty
// string.
func (t Tag) TypeForKey(key string) string {
if _, start, end, _ := t.findTypeForKey(key); end != start {
s := t.str[start:end]
if p := strings.IndexByte(s, '-'); p >= 0 {
s = s[:p]
}
return s
}
return ""
}
var (
errPrivateUse = errors.New("cannot set a key on a private use tag")
errInvalidArguments = errors.New("invalid key or type")
)
// SetTypeForKey returns a new Tag with the key set to type, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// An empty value removes an existing pair with the same key.
func (t Tag) SetTypeForKey(key, value string) (Tag, error) {
if t.IsPrivateUse() {
return t, errPrivateUse
}
if len(key) != 2 {
return t, errInvalidArguments
}
// Remove the setting if value is "".
if value == "" {
start, sep, end, _ := t.findTypeForKey(key)
if start != sep {
// Remove a possible empty extension.
switch {
case t.str[start-2] != '-': // has previous elements.
case end == len(t.str), // end of string
end+2 < len(t.str) && t.str[end+2] == '-': // end of extension
start -= 2
}
if start == int(t.pVariant) && end == len(t.str) {
t.str = ""
t.pVariant, t.pExt = 0, 0
} else {
t.str = fmt.Sprintf("%s%s", t.str[:start], t.str[end:])
}
}
return t, nil
}
if len(value) < 3 || len(value) > 8 {
return t, errInvalidArguments
}
var (
buf [maxCoreSize + maxSimpleUExtensionSize]byte
uStart int // start of the -u extension.
)
// Generate the tag string if needed.
if t.str == "" {
uStart = t.genCoreBytes(buf[:])
buf[uStart] = '-'
uStart++
}
// Create new key-type pair and parse it to verify.
b := buf[uStart:]
copy(b, "u-")
copy(b[2:], key)
b[4] = '-'
b = b[:5+copy(b[5:], value)]
scan := makeScanner(b)
if parseExtensions(&scan); scan.err != nil {
return t, scan.err
}
// Assemble the replacement string.
if t.str == "" {
t.pVariant, t.pExt = byte(uStart-1), uint16(uStart-1)
t.str = string(buf[:uStart+len(b)])
} else {
s := t.str
start, sep, end, hasExt := t.findTypeForKey(key)
if start == sep {
if hasExt {
b = b[2:]
}
t.str = fmt.Sprintf("%s-%s%s", s[:sep], b, s[end:])
} else {
t.str = fmt.Sprintf("%s-%s%s", s[:start+3], value, s[end:])
}
}
return t, nil
}
// findKeyAndType returns the start and end position for the type corresponding
// to key or the point at which to insert the key-value pair if the type
// wasn't found. The hasExt return value reports whether an -u extension was present.
// Note: the extensions are typically very small and are likely to contain
// only one key-type pair.
func (t Tag) findTypeForKey(key string) (start, sep, end int, hasExt bool) {
p := int(t.pExt)
if len(key) != 2 || p == len(t.str) || p == 0 {
return p, p, p, false
}
s := t.str
// Find the correct extension.
for p++; s[p] != 'u'; p++ {
if s[p] > 'u' {
p--
return p, p, p, false
}
if p = nextExtension(s, p); p == len(s) {
return len(s), len(s), len(s), false
}
}
// Proceed to the hyphen following the extension name.
p++
// curKey is the key currently being processed.
curKey := ""
// Iterate over keys until we get the end of a section.
for {
end = p
for p++; p < len(s) && s[p] != '-'; p++ {
}
n := p - end - 1
if n <= 2 && curKey == key {
if sep < end {
sep++
}
return start, sep, end, true
}
switch n {
case 0, // invalid string
1: // next extension
return end, end, end, true
case 2:
// next key
curKey = s[end+1 : p]
if curKey > key {
return end, end, end, true
}
start = end
sep = p
}
}
}
// ParseBase parses a 2- or 3-letter ISO 639 code.
// It returns a ValueError if s is a well-formed but unknown language identifier
// or another error if another error occurred.
func ParseBase(s string) (l Language, err error) {
defer func() {
if recover() != nil {
l = 0
err = ErrSyntax
}
}()
if n := len(s); n < 2 || 3 < n {
return 0, ErrSyntax
}
var buf [3]byte
return getLangID(buf[:copy(buf[:], s)])
}
// ParseScript parses a 4-letter ISO 15924 code.
// It returns a ValueError if s is a well-formed but unknown script identifier
// or another error if another error occurred.
func ParseScript(s string) (scr Script, err error) {
defer func() {
if recover() != nil {
scr = 0
err = ErrSyntax
}
}()
if len(s) != 4 {
return 0, ErrSyntax
}
var buf [4]byte
return getScriptID(script, buf[:copy(buf[:], s)])
}
// EncodeM49 returns the Region for the given UN M.49 code.
// It returns an error if r is not a valid code.
func EncodeM49(r int) (Region, error) {
return getRegionM49(r)
}
// ParseRegion parses a 2- or 3-letter ISO 3166-1 or a UN M.49 code.
// It returns a ValueError if s is a well-formed but unknown region identifier
// or another error if another error occurred.
func ParseRegion(s string) (r Region, err error) {
defer func() {
if recover() != nil {
r = 0
err = ErrSyntax
}
}()
if n := len(s); n < 2 || 3 < n {
return 0, ErrSyntax
}
var buf [3]byte
return getRegionID(buf[:copy(buf[:], s)])
}
// IsCountry returns whether this region is a country or autonomous area. This
// includes non-standard definitions from CLDR.
func (r Region) IsCountry() bool {
if r == 0 || r.IsGroup() || r.IsPrivateUse() && r != _XK {
return false
}
return true
}
// IsGroup returns whether this region defines a collection of regions. This
// includes non-standard definitions from CLDR.
func (r Region) IsGroup() bool {
if r == 0 {
return false
}
return int(regionInclusion[r]) < len(regionContainment)
}
// Contains returns whether Region c is contained by Region r. It returns true
// if c == r.
func (r Region) Contains(c Region) bool {
if r == c {
return true
}
g := regionInclusion[r]
if g >= nRegionGroups {
return false
}
m := regionContainment[g]
d := regionInclusion[c]
b := regionInclusionBits[d]
// A contained country may belong to multiple disjoint groups. Matching any
// of these indicates containment. If the contained region is a group, it
// must strictly be a subset.
if d >= nRegionGroups {
return b&m != 0
}
return b&^m == 0
}
var errNoTLD = errors.New("language: region is not a valid ccTLD")
// TLD returns the country code top-level domain (ccTLD). UK is returned for GB.
// In all other cases it returns either the region itself or an error.
//
// This method may return an error for a region for which there exists a
// canonical form with a ccTLD. To get that ccTLD canonicalize r first. The
// region will already be canonicalized it was obtained from a Tag that was
// obtained using any of the default methods.
func (r Region) TLD() (Region, error) {
// See http://en.wikipedia.org/wiki/Country_code_top-level_domain for the
// difference between ISO 3166-1 and IANA ccTLD.
if r == _GB {
r = _UK
}
if (r.typ() & ccTLD) == 0 {
return 0, errNoTLD
}
return r, nil
}
// Canonicalize returns the region or a possible replacement if the region is
// deprecated. It will not return a replacement for deprecated regions that
// are split into multiple regions.
func (r Region) Canonicalize() Region {
if cr := normRegion(r); cr != 0 {
return cr
}
return r
}
// Variant represents a registered variant of a language as defined by BCP 47.
type Variant struct {
ID uint8
str string
}
// ParseVariant parses and returns a Variant. An error is returned if s is not
// a valid variant.
func ParseVariant(s string) (v Variant, err error) {
defer func() {
if recover() != nil {
v = Variant{}
err = ErrSyntax
}
}()
s = strings.ToLower(s)
if id, ok := variantIndex[s]; ok {
return Variant{id, s}, nil
}
return Variant{}, NewValueError([]byte(s))
}
// String returns the string representation of the variant.
func (v Variant) String() string {
return v.str
}

@ -0,0 +1,412 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"bytes"
"fmt"
"sort"
"strconv"
"golang.org/x/text/internal/tag"
)
// findIndex tries to find the given tag in idx and returns a standardized error
// if it could not be found.
func findIndex(idx tag.Index, key []byte, form string) (index int, err error) {
if !tag.FixCase(form, key) {
return 0, ErrSyntax
}
i := idx.Index(key)
if i == -1 {
return 0, NewValueError(key)
}
return i, nil
}
func searchUint(imap []uint16, key uint16) int {
return sort.Search(len(imap), func(i int) bool {
return imap[i] >= key
})
}
type Language uint16
// getLangID returns the langID of s if s is a canonical subtag
// or langUnknown if s is not a canonical subtag.
func getLangID(s []byte) (Language, error) {
if len(s) == 2 {
return getLangISO2(s)
}
return getLangISO3(s)
}
// TODO language normalization as well as the AliasMaps could be moved to the
// higher level package, but it is a bit tricky to separate the generation.
func (id Language) Canonicalize() (Language, AliasType) {
return normLang(id)
}
// mapLang returns the mapped langID of id according to mapping m.
func normLang(id Language) (Language, AliasType) {
k := sort.Search(len(AliasMap), func(i int) bool {
return AliasMap[i].From >= uint16(id)
})
if k < len(AliasMap) && AliasMap[k].From == uint16(id) {
return Language(AliasMap[k].To), AliasTypes[k]
}
return id, AliasTypeUnknown
}
// getLangISO2 returns the langID for the given 2-letter ISO language code
// or unknownLang if this does not exist.
func getLangISO2(s []byte) (Language, error) {
if !tag.FixCase("zz", s) {
return 0, ErrSyntax
}
if i := lang.Index(s); i != -1 && lang.Elem(i)[3] != 0 {
return Language(i), nil
}
return 0, NewValueError(s)
}
const base = 'z' - 'a' + 1
func strToInt(s []byte) uint {
v := uint(0)
for i := 0; i < len(s); i++ {
v *= base
v += uint(s[i] - 'a')
}
return v
}
// converts the given integer to the original ASCII string passed to strToInt.
// len(s) must match the number of characters obtained.
func intToStr(v uint, s []byte) {
for i := len(s) - 1; i >= 0; i-- {
s[i] = byte(v%base) + 'a'
v /= base
}
}
// getLangISO3 returns the langID for the given 3-letter ISO language code
// or unknownLang if this does not exist.
func getLangISO3(s []byte) (Language, error) {
if tag.FixCase("und", s) {
// first try to match canonical 3-letter entries
for i := lang.Index(s[:2]); i != -1; i = lang.Next(s[:2], i) {
if e := lang.Elem(i); e[3] == 0 && e[2] == s[2] {
// We treat "und" as special and always translate it to "unspecified".
// Note that ZZ and Zzzz are private use and are not treated as
// unspecified by default.
id := Language(i)
if id == nonCanonicalUnd {
return 0, nil
}
return id, nil
}
}
if i := altLangISO3.Index(s); i != -1 {
return Language(altLangIndex[altLangISO3.Elem(i)[3]]), nil
}
n := strToInt(s)
if langNoIndex[n/8]&(1<<(n%8)) != 0 {
return Language(n) + langNoIndexOffset, nil
}
// Check for non-canonical uses of ISO3.
for i := lang.Index(s[:1]); i != -1; i = lang.Next(s[:1], i) {
if e := lang.Elem(i); e[2] == s[1] && e[3] == s[2] {
return Language(i), nil
}
}
return 0, NewValueError(s)
}
return 0, ErrSyntax
}
// StringToBuf writes the string to b and returns the number of bytes
// written. cap(b) must be >= 3.
func (id Language) StringToBuf(b []byte) int {
if id >= langNoIndexOffset {
intToStr(uint(id)-langNoIndexOffset, b[:3])
return 3
} else if id == 0 {
return copy(b, "und")
}
l := lang[id<<2:]
if l[3] == 0 {
return copy(b, l[:3])
}
return copy(b, l[:2])
}
// String returns the BCP 47 representation of the langID.
// Use b as variable name, instead of id, to ensure the variable
// used is consistent with that of Base in which this type is embedded.
func (b Language) String() string {
if b == 0 {
return "und"
} else if b >= langNoIndexOffset {
b -= langNoIndexOffset
buf := [3]byte{}
intToStr(uint(b), buf[:])
return string(buf[:])
}
l := lang.Elem(int(b))
if l[3] == 0 {
return l[:3]
}
return l[:2]
}
// ISO3 returns the ISO 639-3 language code.
func (b Language) ISO3() string {
if b == 0 || b >= langNoIndexOffset {
return b.String()
}
l := lang.Elem(int(b))
if l[3] == 0 {
return l[:3]
} else if l[2] == 0 {
return altLangISO3.Elem(int(l[3]))[:3]
}
// This allocation will only happen for 3-letter ISO codes
// that are non-canonical BCP 47 language identifiers.
return l[0:1] + l[2:4]
}
// IsPrivateUse reports whether this language code is reserved for private use.
func (b Language) IsPrivateUse() bool {
return langPrivateStart <= b && b <= langPrivateEnd
}
// SuppressScript returns the script marked as SuppressScript in the IANA
// language tag repository, or 0 if there is no such script.
func (b Language) SuppressScript() Script {
if b < langNoIndexOffset {
return Script(suppressScript[b])
}
return 0
}
type Region uint16
// getRegionID returns the region id for s if s is a valid 2-letter region code
// or unknownRegion.
func getRegionID(s []byte) (Region, error) {
if len(s) == 3 {
if isAlpha(s[0]) {
return getRegionISO3(s)
}
if i, err := strconv.ParseUint(string(s), 10, 10); err == nil {
return getRegionM49(int(i))
}
}
return getRegionISO2(s)
}
// getRegionISO2 returns the regionID for the given 2-letter ISO country code
// or unknownRegion if this does not exist.
func getRegionISO2(s []byte) (Region, error) {
i, err := findIndex(regionISO, s, "ZZ")
if err != nil {
return 0, err
}
return Region(i) + isoRegionOffset, nil
}
// getRegionISO3 returns the regionID for the given 3-letter ISO country code
// or unknownRegion if this does not exist.
func getRegionISO3(s []byte) (Region, error) {
if tag.FixCase("ZZZ", s) {
for i := regionISO.Index(s[:1]); i != -1; i = regionISO.Next(s[:1], i) {
if e := regionISO.Elem(i); e[2] == s[1] && e[3] == s[2] {
return Region(i) + isoRegionOffset, nil
}
}
for i := 0; i < len(altRegionISO3); i += 3 {
if tag.Compare(altRegionISO3[i:i+3], s) == 0 {
return Region(altRegionIDs[i/3]), nil
}
}
return 0, NewValueError(s)
}
return 0, ErrSyntax
}
func getRegionM49(n int) (Region, error) {
if 0 < n && n <= 999 {
const (
searchBits = 7
regionBits = 9
regionMask = 1<<regionBits - 1
)
idx := n >> searchBits
buf := fromM49[m49Index[idx]:m49Index[idx+1]]
val := uint16(n) << regionBits // we rely on bits shifting out
i := sort.Search(len(buf), func(i int) bool {
return buf[i] >= val
})
if r := fromM49[int(m49Index[idx])+i]; r&^regionMask == val {
return Region(r & regionMask), nil
}
}
var e ValueError
fmt.Fprint(bytes.NewBuffer([]byte(e.v[:])), n)
return 0, e
}
// normRegion returns a region if r is deprecated or 0 otherwise.
// TODO: consider supporting BYS (-> BLR), CSK (-> 200 or CZ), PHI (-> PHL) and AFI (-> DJ).
// TODO: consider mapping split up regions to new most populous one (like CLDR).
func normRegion(r Region) Region {
m := regionOldMap
k := sort.Search(len(m), func(i int) bool {
return m[i].From >= uint16(r)
})
if k < len(m) && m[k].From == uint16(r) {
return Region(m[k].To)
}
return 0
}
const (
iso3166UserAssigned = 1 << iota
ccTLD
bcp47Region
)
func (r Region) typ() byte {
return regionTypes[r]
}
// String returns the BCP 47 representation for the region.
// It returns "ZZ" for an unspecified region.
func (r Region) String() string {
if r < isoRegionOffset {
if r == 0 {
return "ZZ"
}
return fmt.Sprintf("%03d", r.M49())
}
r -= isoRegionOffset
return regionISO.Elem(int(r))[:2]
}
// ISO3 returns the 3-letter ISO code of r.
// Note that not all regions have a 3-letter ISO code.
// In such cases this method returns "ZZZ".
func (r Region) ISO3() string {
if r < isoRegionOffset {
return "ZZZ"
}
r -= isoRegionOffset
reg := regionISO.Elem(int(r))
switch reg[2] {
case 0:
return altRegionISO3[reg[3]:][:3]
case ' ':
return "ZZZ"
}
return reg[0:1] + reg[2:4]
}
// M49 returns the UN M.49 encoding of r, or 0 if this encoding
// is not defined for r.
func (r Region) M49() int {
return int(m49[r])
}
// IsPrivateUse reports whether r has the ISO 3166 User-assigned status. This
// may include private-use tags that are assigned by CLDR and used in this
// implementation. So IsPrivateUse and IsCountry can be simultaneously true.
func (r Region) IsPrivateUse() bool {
return r.typ()&iso3166UserAssigned != 0
}
type Script uint8
// getScriptID returns the script id for string s. It assumes that s
// is of the format [A-Z][a-z]{3}.
func getScriptID(idx tag.Index, s []byte) (Script, error) {
i, err := findIndex(idx, s, "Zzzz")
return Script(i), err
}
// String returns the script code in title case.
// It returns "Zzzz" for an unspecified script.
func (s Script) String() string {
if s == 0 {
return "Zzzz"
}
return script.Elem(int(s))
}
// IsPrivateUse reports whether this script code is reserved for private use.
func (s Script) IsPrivateUse() bool {
return _Qaaa <= s && s <= _Qabx
}
const (
maxAltTaglen = len("en-US-POSIX")
maxLen = maxAltTaglen
)
var (
// grandfatheredMap holds a mapping from legacy and grandfathered tags to
// their base language or index to more elaborate tag.
grandfatheredMap = map[[maxLen]byte]int16{
[maxLen]byte{'a', 'r', 't', '-', 'l', 'o', 'j', 'b', 'a', 'n'}: _jbo, // art-lojban
[maxLen]byte{'i', '-', 'a', 'm', 'i'}: _ami, // i-ami
[maxLen]byte{'i', '-', 'b', 'n', 'n'}: _bnn, // i-bnn
[maxLen]byte{'i', '-', 'h', 'a', 'k'}: _hak, // i-hak
[maxLen]byte{'i', '-', 'k', 'l', 'i', 'n', 'g', 'o', 'n'}: _tlh, // i-klingon
[maxLen]byte{'i', '-', 'l', 'u', 'x'}: _lb, // i-lux
[maxLen]byte{'i', '-', 'n', 'a', 'v', 'a', 'j', 'o'}: _nv, // i-navajo
[maxLen]byte{'i', '-', 'p', 'w', 'n'}: _pwn, // i-pwn
[maxLen]byte{'i', '-', 't', 'a', 'o'}: _tao, // i-tao
[maxLen]byte{'i', '-', 't', 'a', 'y'}: _tay, // i-tay
[maxLen]byte{'i', '-', 't', 's', 'u'}: _tsu, // i-tsu
[maxLen]byte{'n', 'o', '-', 'b', 'o', 'k'}: _nb, // no-bok
[maxLen]byte{'n', 'o', '-', 'n', 'y', 'n'}: _nn, // no-nyn
[maxLen]byte{'s', 'g', 'n', '-', 'b', 'e', '-', 'f', 'r'}: _sfb, // sgn-BE-FR
[maxLen]byte{'s', 'g', 'n', '-', 'b', 'e', '-', 'n', 'l'}: _vgt, // sgn-BE-NL
[maxLen]byte{'s', 'g', 'n', '-', 'c', 'h', '-', 'd', 'e'}: _sgg, // sgn-CH-DE
[maxLen]byte{'z', 'h', '-', 'g', 'u', 'o', 'y', 'u'}: _cmn, // zh-guoyu
[maxLen]byte{'z', 'h', '-', 'h', 'a', 'k', 'k', 'a'}: _hak, // zh-hakka
[maxLen]byte{'z', 'h', '-', 'm', 'i', 'n', '-', 'n', 'a', 'n'}: _nan, // zh-min-nan
[maxLen]byte{'z', 'h', '-', 'x', 'i', 'a', 'n', 'g'}: _hsn, // zh-xiang
// Grandfathered tags with no modern replacement will be converted as
// follows:
[maxLen]byte{'c', 'e', 'l', '-', 'g', 'a', 'u', 'l', 'i', 's', 'h'}: -1, // cel-gaulish
[maxLen]byte{'e', 'n', '-', 'g', 'b', '-', 'o', 'e', 'd'}: -2, // en-GB-oed
[maxLen]byte{'i', '-', 'd', 'e', 'f', 'a', 'u', 'l', 't'}: -3, // i-default
[maxLen]byte{'i', '-', 'e', 'n', 'o', 'c', 'h', 'i', 'a', 'n'}: -4, // i-enochian
[maxLen]byte{'i', '-', 'm', 'i', 'n', 'g', 'o'}: -5, // i-mingo
[maxLen]byte{'z', 'h', '-', 'm', 'i', 'n'}: -6, // zh-min
// CLDR-specific tag.
[maxLen]byte{'r', 'o', 'o', 't'}: 0, // root
[maxLen]byte{'e', 'n', '-', 'u', 's', '-', 'p', 'o', 's', 'i', 'x'}: -7, // en_US_POSIX"
}
altTagIndex = [...]uint8{0, 17, 31, 45, 61, 74, 86, 102}
altTags = "xtg-x-cel-gaulishen-GB-oxendicten-x-i-defaultund-x-i-enochiansee-x-i-mingonan-x-zh-minen-US-u-va-posix"
)
func grandfathered(s [maxAltTaglen]byte) (t Tag, ok bool) {
if v, ok := grandfatheredMap[s]; ok {
if v < 0 {
return Make(altTags[altTagIndex[-v-1]:altTagIndex[-v]]), true
}
t.LangID = Language(v)
return t, true
}
return t, false
}

@ -0,0 +1,226 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import "errors"
type scriptRegionFlags uint8
const (
isList = 1 << iota
scriptInFrom
regionInFrom
)
func (t *Tag) setUndefinedLang(id Language) {
if t.LangID == 0 {
t.LangID = id
}
}
func (t *Tag) setUndefinedScript(id Script) {
if t.ScriptID == 0 {
t.ScriptID = id
}
}
func (t *Tag) setUndefinedRegion(id Region) {
if t.RegionID == 0 || t.RegionID.Contains(id) {
t.RegionID = id
}
}
// ErrMissingLikelyTagsData indicates no information was available
// to compute likely values of missing tags.
var ErrMissingLikelyTagsData = errors.New("missing likely tags data")
// addLikelySubtags sets subtags to their most likely value, given the locale.
// In most cases this means setting fields for unknown values, but in some
// cases it may alter a value. It returns an ErrMissingLikelyTagsData error
// if the given locale cannot be expanded.
func (t Tag) addLikelySubtags() (Tag, error) {
id, err := addTags(t)
if err != nil {
return t, err
} else if id.equalTags(t) {
return t, nil
}
id.RemakeString()
return id, nil
}
// specializeRegion attempts to specialize a group region.
func specializeRegion(t *Tag) bool {
if i := regionInclusion[t.RegionID]; i < nRegionGroups {
x := likelyRegionGroup[i]
if Language(x.lang) == t.LangID && Script(x.script) == t.ScriptID {
t.RegionID = Region(x.region)
}
return true
}
return false
}
// Maximize returns a new tag with missing tags filled in.
func (t Tag) Maximize() (Tag, error) {
return addTags(t)
}
func addTags(t Tag) (Tag, error) {
// We leave private use identifiers alone.
if t.IsPrivateUse() {
return t, nil
}
if t.ScriptID != 0 && t.RegionID != 0 {
if t.LangID != 0 {
// already fully specified
specializeRegion(&t)
return t, nil
}
// Search matches for und-script-region. Note that for these cases
// region will never be a group so there is no need to check for this.
list := likelyRegion[t.RegionID : t.RegionID+1]
if x := list[0]; x.flags&isList != 0 {
list = likelyRegionList[x.lang : x.lang+uint16(x.script)]
}
for _, x := range list {
// Deviating from the spec. See match_test.go for details.
if Script(x.script) == t.ScriptID {
t.setUndefinedLang(Language(x.lang))
return t, nil
}
}
}
if t.LangID != 0 {
// Search matches for lang-script and lang-region, where lang != und.
if t.LangID < langNoIndexOffset {
x := likelyLang[t.LangID]
if x.flags&isList != 0 {
list := likelyLangList[x.region : x.region+uint16(x.script)]
if t.ScriptID != 0 {
for _, x := range list {
if Script(x.script) == t.ScriptID && x.flags&scriptInFrom != 0 {
t.setUndefinedRegion(Region(x.region))
return t, nil
}
}
} else if t.RegionID != 0 {
count := 0
goodScript := true
tt := t
for _, x := range list {
// We visit all entries for which the script was not
// defined, including the ones where the region was not
// defined. This allows for proper disambiguation within
// regions.
if x.flags&scriptInFrom == 0 && t.RegionID.Contains(Region(x.region)) {
tt.RegionID = Region(x.region)
tt.setUndefinedScript(Script(x.script))
goodScript = goodScript && tt.ScriptID == Script(x.script)
count++
}
}
if count == 1 {
return tt, nil
}
// Even if we fail to find a unique Region, we might have
// an unambiguous script.
if goodScript {
t.ScriptID = tt.ScriptID
}
}
}
}
} else {
// Search matches for und-script.
if t.ScriptID != 0 {
x := likelyScript[t.ScriptID]
if x.region != 0 {
t.setUndefinedRegion(Region(x.region))
t.setUndefinedLang(Language(x.lang))
return t, nil
}
}
// Search matches for und-region. If und-script-region exists, it would
// have been found earlier.
if t.RegionID != 0 {
if i := regionInclusion[t.RegionID]; i < nRegionGroups {
x := likelyRegionGroup[i]
if x.region != 0 {
t.setUndefinedLang(Language(x.lang))
t.setUndefinedScript(Script(x.script))
t.RegionID = Region(x.region)
}
} else {
x := likelyRegion[t.RegionID]
if x.flags&isList != 0 {
x = likelyRegionList[x.lang]
}
if x.script != 0 && x.flags != scriptInFrom {
t.setUndefinedLang(Language(x.lang))
t.setUndefinedScript(Script(x.script))
return t, nil
}
}
}
}
// Search matches for lang.
if t.LangID < langNoIndexOffset {
x := likelyLang[t.LangID]
if x.flags&isList != 0 {
x = likelyLangList[x.region]
}
if x.region != 0 {
t.setUndefinedScript(Script(x.script))
t.setUndefinedRegion(Region(x.region))
}
specializeRegion(&t)
if t.LangID == 0 {
t.LangID = _en // default language
}
return t, nil
}
return t, ErrMissingLikelyTagsData
}
func (t *Tag) setTagsFrom(id Tag) {
t.LangID = id.LangID
t.ScriptID = id.ScriptID
t.RegionID = id.RegionID
}
// minimize removes the region or script subtags from t such that
// t.addLikelySubtags() == t.minimize().addLikelySubtags().
func (t Tag) minimize() (Tag, error) {
t, err := minimizeTags(t)
if err != nil {
return t, err
}
t.RemakeString()
return t, nil
}
// minimizeTags mimics the behavior of the ICU 51 C implementation.
func minimizeTags(t Tag) (Tag, error) {
if t.equalTags(Und) {
return t, nil
}
max, err := addTags(t)
if err != nil {
return t, err
}
for _, id := range [...]Tag{
{LangID: t.LangID},
{LangID: t.LangID, RegionID: t.RegionID},
{LangID: t.LangID, ScriptID: t.ScriptID},
} {
if x, err := addTags(id); err == nil && max.equalTags(x) {
t.setTagsFrom(id)
break
}
}
return t, nil
}

@ -0,0 +1,604 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"bytes"
"errors"
"fmt"
"sort"
"golang.org/x/text/internal/tag"
)
// isAlpha returns true if the byte is not a digit.
// b must be an ASCII letter or digit.
func isAlpha(b byte) bool {
return b > '9'
}
// isAlphaNum returns true if the string contains only ASCII letters or digits.
func isAlphaNum(s []byte) bool {
for _, c := range s {
if !('a' <= c && c <= 'z' || 'A' <= c && c <= 'Z' || '0' <= c && c <= '9') {
return false
}
}
return true
}
// ErrSyntax is returned by any of the parsing functions when the
// input is not well-formed, according to BCP 47.
// TODO: return the position at which the syntax error occurred?
var ErrSyntax = errors.New("language: tag is not well-formed")
// ErrDuplicateKey is returned when a tag contains the same key twice with
// different values in the -u section.
var ErrDuplicateKey = errors.New("language: different values for same key in -u extension")
// ValueError is returned by any of the parsing functions when the
// input is well-formed but the respective subtag is not recognized
// as a valid value.
type ValueError struct {
v [8]byte
}
// NewValueError creates a new ValueError.
func NewValueError(tag []byte) ValueError {
var e ValueError
copy(e.v[:], tag)
return e
}
func (e ValueError) tag() []byte {
n := bytes.IndexByte(e.v[:], 0)
if n == -1 {
n = 8
}
return e.v[:n]
}
// Error implements the error interface.
func (e ValueError) Error() string {
return fmt.Sprintf("language: subtag %q is well-formed but unknown", e.tag())
}
// Subtag returns the subtag for which the error occurred.
func (e ValueError) Subtag() string {
return string(e.tag())
}
// scanner is used to scan BCP 47 tokens, which are separated by _ or -.
type scanner struct {
b []byte
bytes [max99thPercentileSize]byte
token []byte
start int // start position of the current token
end int // end position of the current token
next int // next point for scan
err error
done bool
}
func makeScannerString(s string) scanner {
scan := scanner{}
if len(s) <= len(scan.bytes) {
scan.b = scan.bytes[:copy(scan.bytes[:], s)]
} else {
scan.b = []byte(s)
}
scan.init()
return scan
}
// makeScanner returns a scanner using b as the input buffer.
// b is not copied and may be modified by the scanner routines.
func makeScanner(b []byte) scanner {
scan := scanner{b: b}
scan.init()
return scan
}
func (s *scanner) init() {
for i, c := range s.b {
if c == '_' {
s.b[i] = '-'
}
}
s.scan()
}
// restToLower converts the string between start and end to lower case.
func (s *scanner) toLower(start, end int) {
for i := start; i < end; i++ {
c := s.b[i]
if 'A' <= c && c <= 'Z' {
s.b[i] += 'a' - 'A'
}
}
}
func (s *scanner) setError(e error) {
if s.err == nil || (e == ErrSyntax && s.err != ErrSyntax) {
s.err = e
}
}
// resizeRange shrinks or grows the array at position oldStart such that
// a new string of size newSize can fit between oldStart and oldEnd.
// Sets the scan point to after the resized range.
func (s *scanner) resizeRange(oldStart, oldEnd, newSize int) {
s.start = oldStart
if end := oldStart + newSize; end != oldEnd {
diff := end - oldEnd
var b []byte
if n := len(s.b) + diff; n > cap(s.b) {
b = make([]byte, n)
copy(b, s.b[:oldStart])
} else {
b = s.b[:n]
}
copy(b[end:], s.b[oldEnd:])
s.b = b
s.next = end + (s.next - s.end)
s.end = end
}
}
// replace replaces the current token with repl.
func (s *scanner) replace(repl string) {
s.resizeRange(s.start, s.end, len(repl))
copy(s.b[s.start:], repl)
}
// gobble removes the current token from the input.
// Caller must call scan after calling gobble.
func (s *scanner) gobble(e error) {
s.setError(e)
if s.start == 0 {
s.b = s.b[:+copy(s.b, s.b[s.next:])]
s.end = 0
} else {
s.b = s.b[:s.start-1+copy(s.b[s.start-1:], s.b[s.end:])]
s.end = s.start - 1
}
s.next = s.start
}
// deleteRange removes the given range from s.b before the current token.
func (s *scanner) deleteRange(start, end int) {
s.b = s.b[:start+copy(s.b[start:], s.b[end:])]
diff := end - start
s.next -= diff
s.start -= diff
s.end -= diff
}
// scan parses the next token of a BCP 47 string. Tokens that are larger
// than 8 characters or include non-alphanumeric characters result in an error
// and are gobbled and removed from the output.
// It returns the end position of the last token consumed.
func (s *scanner) scan() (end int) {
end = s.end
s.token = nil
for s.start = s.next; s.next < len(s.b); {
i := bytes.IndexByte(s.b[s.next:], '-')
if i == -1 {
s.end = len(s.b)
s.next = len(s.b)
i = s.end - s.start
} else {
s.end = s.next + i
s.next = s.end + 1
}
token := s.b[s.start:s.end]
if i < 1 || i > 8 || !isAlphaNum(token) {
s.gobble(ErrSyntax)
continue
}
s.token = token
return end
}
if n := len(s.b); n > 0 && s.b[n-1] == '-' {
s.setError(ErrSyntax)
s.b = s.b[:len(s.b)-1]
}
s.done = true
return end
}
// acceptMinSize parses multiple tokens of the given size or greater.
// It returns the end position of the last token consumed.
func (s *scanner) acceptMinSize(min int) (end int) {
end = s.end
s.scan()
for ; len(s.token) >= min; s.scan() {
end = s.end
}
return end
}
// Parse parses the given BCP 47 string and returns a valid Tag. If parsing
// failed it returns an error and any part of the tag that could be parsed.
// If parsing succeeded but an unknown value was found, it returns
// ValueError. The Tag returned in this case is just stripped of the unknown
// value. All other values are preserved. It accepts tags in the BCP 47 format
// and extensions to this standard defined in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
func Parse(s string) (t Tag, err error) {
// TODO: consider supporting old-style locale key-value pairs.
if s == "" {
return Und, ErrSyntax
}
defer func() {
if recover() != nil {
t = Und
err = ErrSyntax
return
}
}()
if len(s) <= maxAltTaglen {
b := [maxAltTaglen]byte{}
for i, c := range s {
// Generating invalid UTF-8 is okay as it won't match.
if 'A' <= c && c <= 'Z' {
c += 'a' - 'A'
} else if c == '_' {
c = '-'
}
b[i] = byte(c)
}
if t, ok := grandfathered(b); ok {
return t, nil
}
}
scan := makeScannerString(s)
return parse(&scan, s)
}
func parse(scan *scanner, s string) (t Tag, err error) {
t = Und
var end int
if n := len(scan.token); n <= 1 {
scan.toLower(0, len(scan.b))
if n == 0 || scan.token[0] != 'x' {
return t, ErrSyntax
}
end = parseExtensions(scan)
} else if n >= 4 {
return Und, ErrSyntax
} else { // the usual case
t, end = parseTag(scan)
if n := len(scan.token); n == 1 {
t.pExt = uint16(end)
end = parseExtensions(scan)
} else if end < len(scan.b) {
scan.setError(ErrSyntax)
scan.b = scan.b[:end]
}
}
if int(t.pVariant) < len(scan.b) {
if end < len(s) {
s = s[:end]
}
if len(s) > 0 && tag.Compare(s, scan.b) == 0 {
t.str = s
} else {
t.str = string(scan.b)
}
} else {
t.pVariant, t.pExt = 0, 0
}
return t, scan.err
}
// parseTag parses language, script, region and variants.
// It returns a Tag and the end position in the input that was parsed.
func parseTag(scan *scanner) (t Tag, end int) {
var e error
// TODO: set an error if an unknown lang, script or region is encountered.
t.LangID, e = getLangID(scan.token)
scan.setError(e)
scan.replace(t.LangID.String())
langStart := scan.start
end = scan.scan()
for len(scan.token) == 3 && isAlpha(scan.token[0]) {
// From http://tools.ietf.org/html/bcp47, <lang>-<extlang> tags are equivalent
// to a tag of the form <extlang>.
lang, e := getLangID(scan.token)
if lang != 0 {
t.LangID = lang
copy(scan.b[langStart:], lang.String())
scan.b[langStart+3] = '-'
scan.start = langStart + 4
}
scan.gobble(e)
end = scan.scan()
}
if len(scan.token) == 4 && isAlpha(scan.token[0]) {
t.ScriptID, e = getScriptID(script, scan.token)
if t.ScriptID == 0 {
scan.gobble(e)
}
end = scan.scan()
}
if n := len(scan.token); n >= 2 && n <= 3 {
t.RegionID, e = getRegionID(scan.token)
if t.RegionID == 0 {
scan.gobble(e)
} else {
scan.replace(t.RegionID.String())
}
end = scan.scan()
}
scan.toLower(scan.start, len(scan.b))
t.pVariant = byte(end)
end = parseVariants(scan, end, t)
t.pExt = uint16(end)
return t, end
}
var separator = []byte{'-'}
// parseVariants scans tokens as long as each token is a valid variant string.
// Duplicate variants are removed.
func parseVariants(scan *scanner, end int, t Tag) int {
start := scan.start
varIDBuf := [4]uint8{}
variantBuf := [4][]byte{}
varID := varIDBuf[:0]
variant := variantBuf[:0]
last := -1
needSort := false
for ; len(scan.token) >= 4; scan.scan() {
// TODO: measure the impact of needing this conversion and redesign
// the data structure if there is an issue.
v, ok := variantIndex[string(scan.token)]
if !ok {
// unknown variant
// TODO: allow user-defined variants?
scan.gobble(NewValueError(scan.token))
continue
}
varID = append(varID, v)
variant = append(variant, scan.token)
if !needSort {
if last < int(v) {
last = int(v)
} else {
needSort = true
// There is no legal combinations of more than 7 variants
// (and this is by no means a useful sequence).
const maxVariants = 8
if len(varID) > maxVariants {
break
}
}
}
end = scan.end
}
if needSort {
sort.Sort(variantsSort{varID, variant})
k, l := 0, -1
for i, v := range varID {
w := int(v)
if l == w {
// Remove duplicates.
continue
}
varID[k] = varID[i]
variant[k] = variant[i]
k++
l = w
}
if str := bytes.Join(variant[:k], separator); len(str) == 0 {
end = start - 1
} else {
scan.resizeRange(start, end, len(str))
copy(scan.b[scan.start:], str)
end = scan.end
}
}
return end
}
type variantsSort struct {
i []uint8
v [][]byte
}
func (s variantsSort) Len() int {
return len(s.i)
}
func (s variantsSort) Swap(i, j int) {
s.i[i], s.i[j] = s.i[j], s.i[i]
s.v[i], s.v[j] = s.v[j], s.v[i]
}
func (s variantsSort) Less(i, j int) bool {
return s.i[i] < s.i[j]
}
type bytesSort struct {
b [][]byte
n int // first n bytes to compare
}
func (b bytesSort) Len() int {
return len(b.b)
}
func (b bytesSort) Swap(i, j int) {
b.b[i], b.b[j] = b.b[j], b.b[i]
}
func (b bytesSort) Less(i, j int) bool {
for k := 0; k < b.n; k++ {
if b.b[i][k] == b.b[j][k] {
continue
}
return b.b[i][k] < b.b[j][k]
}
return false
}
// parseExtensions parses and normalizes the extensions in the buffer.
// It returns the last position of scan.b that is part of any extension.
// It also trims scan.b to remove excess parts accordingly.
func parseExtensions(scan *scanner) int {
start := scan.start
exts := [][]byte{}
private := []byte{}
end := scan.end
for len(scan.token) == 1 {
extStart := scan.start
ext := scan.token[0]
end = parseExtension(scan)
extension := scan.b[extStart:end]
if len(extension) < 3 || (ext != 'x' && len(extension) < 4) {
scan.setError(ErrSyntax)
end = extStart
continue
} else if start == extStart && (ext == 'x' || scan.start == len(scan.b)) {
scan.b = scan.b[:end]
return end
} else if ext == 'x' {
private = extension
break
}
exts = append(exts, extension)
}
sort.Sort(bytesSort{exts, 1})
if len(private) > 0 {
exts = append(exts, private)
}
scan.b = scan.b[:start]
if len(exts) > 0 {
scan.b = append(scan.b, bytes.Join(exts, separator)...)
} else if start > 0 {
// Strip trailing '-'.
scan.b = scan.b[:start-1]
}
return end
}
// parseExtension parses a single extension and returns the position of
// the extension end.
func parseExtension(scan *scanner) int {
start, end := scan.start, scan.end
switch scan.token[0] {
case 'u': // https://www.ietf.org/rfc/rfc6067.txt
attrStart := end
scan.scan()
for last := []byte{}; len(scan.token) > 2; scan.scan() {
if bytes.Compare(scan.token, last) != -1 {
// Attributes are unsorted. Start over from scratch.
p := attrStart + 1
scan.next = p
attrs := [][]byte{}
for scan.scan(); len(scan.token) > 2; scan.scan() {
attrs = append(attrs, scan.token)
end = scan.end
}
sort.Sort(bytesSort{attrs, 3})
copy(scan.b[p:], bytes.Join(attrs, separator))
break
}
last = scan.token
end = scan.end
}
// Scan key-type sequences. A key is of length 2 and may be followed
// by 0 or more "type" subtags from 3 to the maximum of 8 letters.
var last, key []byte
for attrEnd := end; len(scan.token) == 2; last = key {
key = scan.token
end = scan.end
for scan.scan(); end < scan.end && len(scan.token) > 2; scan.scan() {
end = scan.end
}
// TODO: check key value validity
if bytes.Compare(key, last) != 1 || scan.err != nil {
// We have an invalid key or the keys are not sorted.
// Start scanning keys from scratch and reorder.
p := attrEnd + 1
scan.next = p
keys := [][]byte{}
for scan.scan(); len(scan.token) == 2; {
keyStart := scan.start
end = scan.end
for scan.scan(); end < scan.end && len(scan.token) > 2; scan.scan() {
end = scan.end
}
keys = append(keys, scan.b[keyStart:end])
}
sort.Stable(bytesSort{keys, 2})
if n := len(keys); n > 0 {
k := 0
for i := 1; i < n; i++ {
if !bytes.Equal(keys[k][:2], keys[i][:2]) {
k++
keys[k] = keys[i]
} else if !bytes.Equal(keys[k], keys[i]) {
scan.setError(ErrDuplicateKey)
}
}
keys = keys[:k+1]
}
reordered := bytes.Join(keys, separator)
if e := p + len(reordered); e < end {
scan.deleteRange(e, end)
end = e
}
copy(scan.b[p:], reordered)
break
}
}
case 't': // https://www.ietf.org/rfc/rfc6497.txt
scan.scan()
if n := len(scan.token); n >= 2 && n <= 3 && isAlpha(scan.token[1]) {
_, end = parseTag(scan)
scan.toLower(start, end)
}
for len(scan.token) == 2 && !isAlpha(scan.token[1]) {
end = scan.acceptMinSize(3)
}
case 'x':
end = scan.acceptMinSize(1)
default:
end = scan.acceptMinSize(2)
}
return end
}
// getExtension returns the name, body and end position of the extension.
func getExtension(s string, p int) (end int, ext string) {
if s[p] == '-' {
p++
}
if s[p] == 'x' {
return len(s), s[p:]
}
end = nextExtension(s, p)
return end, s[p:end]
}
// nextExtension finds the next extension within the string, searching
// for the -<char>- pattern from position p.
// In the fast majority of cases, language tags will have at most
// one extension and extensions tend to be small.
func nextExtension(s string, p int) int {
for n := len(s) - 3; p < n; {
if s[p] == '-' {
if s[p+2] == '-' {
return p
}
p += 3
} else {
p++
}
}
return len(s)
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,48 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
// MustParse is like Parse, but panics if the given BCP 47 tag cannot be parsed.
// It simplifies safe initialization of Tag values.
func MustParse(s string) Tag {
t, err := Parse(s)
if err != nil {
panic(err)
}
return t
}
// MustParseBase is like ParseBase, but panics if the given base cannot be parsed.
// It simplifies safe initialization of Base values.
func MustParseBase(s string) Language {
b, err := ParseBase(s)
if err != nil {
panic(err)
}
return b
}
// MustParseScript is like ParseScript, but panics if the given script cannot be
// parsed. It simplifies safe initialization of Script values.
func MustParseScript(s string) Script {
scr, err := ParseScript(s)
if err != nil {
panic(err)
}
return scr
}
// MustParseRegion is like ParseRegion, but panics if the given region cannot be
// parsed. It simplifies safe initialization of Region values.
func MustParseRegion(s string) Region {
r, err := ParseRegion(s)
if err != nil {
panic(err)
}
return r
}
// Und is the root language.
var Und Tag

@ -0,0 +1,100 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tag contains functionality handling tags and related data.
package tag // import "golang.org/x/text/internal/tag"
import "sort"
// An Index converts tags to a compact numeric value.
//
// All elements are of size 4. Tags may be up to 4 bytes long. Excess bytes can
// be used to store additional information about the tag.
type Index string
// Elem returns the element data at the given index.
func (s Index) Elem(x int) string {
return string(s[x*4 : x*4+4])
}
// Index reports the index of the given key or -1 if it could not be found.
// Only the first len(key) bytes from the start of the 4-byte entries will be
// considered for the search and the first match in Index will be returned.
func (s Index) Index(key []byte) int {
n := len(key)
// search the index of the first entry with an equal or higher value than
// key in s.
index := sort.Search(len(s)/4, func(i int) bool {
return cmp(s[i*4:i*4+n], key) != -1
})
i := index * 4
if cmp(s[i:i+len(key)], key) != 0 {
return -1
}
return index
}
// Next finds the next occurrence of key after index x, which must have been
// obtained from a call to Index using the same key. It returns x+1 or -1.
func (s Index) Next(key []byte, x int) int {
if x++; x*4 < len(s) && cmp(s[x*4:x*4+len(key)], key) == 0 {
return x
}
return -1
}
// cmp returns an integer comparing a and b lexicographically.
func cmp(a Index, b []byte) int {
n := len(a)
if len(b) < n {
n = len(b)
}
for i, c := range b[:n] {
switch {
case a[i] > c:
return 1
case a[i] < c:
return -1
}
}
switch {
case len(a) < len(b):
return -1
case len(a) > len(b):
return 1
}
return 0
}
// Compare returns an integer comparing a and b lexicographically.
func Compare(a string, b []byte) int {
return cmp(Index(a), b)
}
// FixCase reformats b to the same pattern of cases as form.
// If returns false if string b is malformed.
func FixCase(form string, b []byte) bool {
if len(form) != len(b) {
return false
}
for i, c := range b {
if form[i] <= 'Z' {
if c >= 'a' {
c -= 'z' - 'Z'
}
if c < 'A' || 'Z' < c {
return false
}
} else {
if c <= 'Z' {
c += 'z' - 'Z'
}
if c < 'a' || 'z' < c {
return false
}
}
b[i] = c
}
return true
}

@ -0,0 +1,87 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package utf8internal contains low-level utf8-related constants, tables, etc.
// that are used internally by the text package.
package utf8internal
// The default lowest and highest continuation byte.
const (
LoCB = 0x80 // 1000 0000
HiCB = 0xBF // 1011 1111
)
// Constants related to getting information of first bytes of UTF-8 sequences.
const (
// ASCII identifies a UTF-8 byte as ASCII.
ASCII = as
// FirstInvalid indicates a byte is invalid as a first byte of a UTF-8
// sequence.
FirstInvalid = xx
// SizeMask is a mask for the size bits. Use use x&SizeMask to get the size.
SizeMask = 7
// AcceptShift is the right-shift count for the first byte info byte to get
// the index into the AcceptRanges table. See AcceptRanges.
AcceptShift = 4
// The names of these constants are chosen to give nice alignment in the
// table below. The first nibble is an index into acceptRanges or F for
// special one-byte cases. The second nibble is the Rune length or the
// Status for the special one-byte case.
xx = 0xF1 // invalid: size 1
as = 0xF0 // ASCII: size 1
s1 = 0x02 // accept 0, size 2
s2 = 0x13 // accept 1, size 3
s3 = 0x03 // accept 0, size 3
s4 = 0x23 // accept 2, size 3
s5 = 0x34 // accept 3, size 4
s6 = 0x04 // accept 0, size 4
s7 = 0x44 // accept 4, size 4
)
// First is information about the first byte in a UTF-8 sequence.
var First = [256]uint8{
// 1 2 3 4 5 6 7 8 9 A B C D E F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x00-0x0F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x10-0x1F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x20-0x2F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x30-0x3F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x40-0x4F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x50-0x5F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x60-0x6F
as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x70-0x7F
// 1 2 3 4 5 6 7 8 9 A B C D E F
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x80-0x8F
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x90-0x9F
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xA0-0xAF
xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xB0-0xBF
xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xC0-0xCF
s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xD0-0xDF
s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3, // 0xE0-0xEF
s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xF0-0xFF
}
// AcceptRange gives the range of valid values for the second byte in a UTF-8
// sequence for any value for First that is not ASCII or FirstInvalid.
type AcceptRange struct {
Lo uint8 // lowest value for second byte.
Hi uint8 // highest value for second byte.
}
// AcceptRanges is a slice of AcceptRange values. For a given byte sequence b
//
// AcceptRanges[First[b[0]]>>AcceptShift]
//
// will give the value of AcceptRange for the multi-byte UTF-8 sequence starting
// at b[0].
var AcceptRanges = [...]AcceptRange{
0: {LoCB, HiCB},
1: {0xA0, HiCB},
2: {LoCB, 0x9F},
3: {0x90, HiCB},
4: {LoCB, 0x8F},
}

@ -0,0 +1,187 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"fmt"
"sort"
"golang.org/x/text/internal/language"
)
// The Coverage interface is used to define the level of coverage of an
// internationalization service. Note that not all types are supported by all
// services. As lists may be generated on the fly, it is recommended that users
// of a Coverage cache the results.
type Coverage interface {
// Tags returns the list of supported tags.
Tags() []Tag
// BaseLanguages returns the list of supported base languages.
BaseLanguages() []Base
// Scripts returns the list of supported scripts.
Scripts() []Script
// Regions returns the list of supported regions.
Regions() []Region
}
var (
// Supported defines a Coverage that lists all supported subtags. Tags
// always returns nil.
Supported Coverage = allSubtags{}
)
// TODO:
// - Support Variants, numbering systems.
// - CLDR coverage levels.
// - Set of common tags defined in this package.
type allSubtags struct{}
// Regions returns the list of supported regions. As all regions are in a
// consecutive range, it simply returns a slice of numbers in increasing order.
// The "undefined" region is not returned.
func (s allSubtags) Regions() []Region {
reg := make([]Region, language.NumRegions)
for i := range reg {
reg[i] = Region{language.Region(i + 1)}
}
return reg
}
// Scripts returns the list of supported scripts. As all scripts are in a
// consecutive range, it simply returns a slice of numbers in increasing order.
// The "undefined" script is not returned.
func (s allSubtags) Scripts() []Script {
scr := make([]Script, language.NumScripts)
for i := range scr {
scr[i] = Script{language.Script(i + 1)}
}
return scr
}
// BaseLanguages returns the list of all supported base languages. It generates
// the list by traversing the internal structures.
func (s allSubtags) BaseLanguages() []Base {
bs := language.BaseLanguages()
base := make([]Base, len(bs))
for i, b := range bs {
base[i] = Base{b}
}
return base
}
// Tags always returns nil.
func (s allSubtags) Tags() []Tag {
return nil
}
// coverage is used by NewCoverage which is used as a convenient way for
// creating Coverage implementations for partially defined data. Very often a
// package will only need to define a subset of slices. coverage provides a
// convenient way to do this. Moreover, packages using NewCoverage, instead of
// their own implementation, will not break if later new slice types are added.
type coverage struct {
tags func() []Tag
bases func() []Base
scripts func() []Script
regions func() []Region
}
func (s *coverage) Tags() []Tag {
if s.tags == nil {
return nil
}
return s.tags()
}
// bases implements sort.Interface and is used to sort base languages.
type bases []Base
func (b bases) Len() int {
return len(b)
}
func (b bases) Swap(i, j int) {
b[i], b[j] = b[j], b[i]
}
func (b bases) Less(i, j int) bool {
return b[i].langID < b[j].langID
}
// BaseLanguages returns the result from calling s.bases if it is specified or
// otherwise derives the set of supported base languages from tags.
func (s *coverage) BaseLanguages() []Base {
if s.bases == nil {
tags := s.Tags()
if len(tags) == 0 {
return nil
}
a := make([]Base, len(tags))
for i, t := range tags {
a[i] = Base{language.Language(t.lang())}
}
sort.Sort(bases(a))
k := 0
for i := 1; i < len(a); i++ {
if a[k] != a[i] {
k++
a[k] = a[i]
}
}
return a[:k+1]
}
return s.bases()
}
func (s *coverage) Scripts() []Script {
if s.scripts == nil {
return nil
}
return s.scripts()
}
func (s *coverage) Regions() []Region {
if s.regions == nil {
return nil
}
return s.regions()
}
// NewCoverage returns a Coverage for the given lists. It is typically used by
// packages providing internationalization services to define their level of
// coverage. A list may be of type []T or func() []T, where T is either Tag,
// Base, Script or Region. The returned Coverage derives the value for Bases
// from Tags if no func or slice for []Base is specified. For other unspecified
// types the returned Coverage will return nil for the respective methods.
func NewCoverage(list ...interface{}) Coverage {
s := &coverage{}
for _, x := range list {
switch v := x.(type) {
case func() []Base:
s.bases = v
case func() []Script:
s.scripts = v
case func() []Region:
s.regions = v
case func() []Tag:
s.tags = v
case []Base:
s.bases = func() []Base { return v }
case []Script:
s.scripts = func() []Script { return v }
case []Region:
s.regions = func() []Region { return v }
case []Tag:
s.tags = func() []Tag { return v }
default:
panic(fmt.Sprintf("language: unsupported set type %T", v))
}
}
return s
}

@ -0,0 +1,102 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package language implements BCP 47 language tags and related functionality.
//
// The most important function of package language is to match a list of
// user-preferred languages to a list of supported languages.
// It alleviates the developer of dealing with the complexity of this process
// and provides the user with the best experience
// (see https://blog.golang.org/matchlang).
//
//
// Matching preferred against supported languages
//
// A Matcher for an application that supports English, Australian English,
// Danish, and standard Mandarin can be created as follows:
//
// var matcher = language.NewMatcher([]language.Tag{
// language.English, // The first language is used as fallback.
// language.MustParse("en-AU"),
// language.Danish,
// language.Chinese,
// })
//
// This list of supported languages is typically implied by the languages for
// which there exists translations of the user interface.
//
// User-preferred languages usually come as a comma-separated list of BCP 47
// language tags.
// The MatchString finds best matches for such strings:
//
// handler(w http.ResponseWriter, r *http.Request) {
// lang, _ := r.Cookie("lang")
// accept := r.Header.Get("Accept-Language")
// tag, _ := language.MatchStrings(matcher, lang.String(), accept)
//
// // tag should now be used for the initialization of any
// // locale-specific service.
// }
//
// The Matcher's Match method can be used to match Tags directly.
//
// Matchers are aware of the intricacies of equivalence between languages, such
// as deprecated subtags, legacy tags, macro languages, mutual
// intelligibility between scripts and languages, and transparently passing
// BCP 47 user configuration.
// For instance, it will know that a reader of Bokmål Danish can read Norwegian
// and will know that Cantonese ("yue") is a good match for "zh-HK".
//
//
// Using match results
//
// To guarantee a consistent user experience to the user it is important to
// use the same language tag for the selection of any locale-specific services.
// For example, it is utterly confusing to substitute spelled-out numbers
// or dates in one language in text of another language.
// More subtly confusing is using the wrong sorting order or casing
// algorithm for a certain language.
//
// All the packages in x/text that provide locale-specific services
// (e.g. collate, cases) should be initialized with the tag that was
// obtained at the start of an interaction with the user.
//
// Note that Tag that is returned by Match and MatchString may differ from any
// of the supported languages, as it may contain carried over settings from
// the user tags.
// This may be inconvenient when your application has some additional
// locale-specific data for your supported languages.
// Match and MatchString both return the index of the matched supported tag
// to simplify associating such data with the matched tag.
//
//
// Canonicalization
//
// If one uses the Matcher to compare languages one does not need to
// worry about canonicalization.
//
// The meaning of a Tag varies per application. The language package
// therefore delays canonicalization and preserves information as much
// as possible. The Matcher, however, will always take into account that
// two different tags may represent the same language.
//
// By default, only legacy and deprecated tags are converted into their
// canonical equivalent. All other information is preserved. This approach makes
// the confidence scores more accurate and allows matchers to distinguish
// between variants that are otherwise lost.
//
// As a consequence, two tags that should be treated as identical according to
// BCP 47 or CLDR, like "en-Latn" and "en", will be represented differently. The
// Matcher handles such distinctions, though, and is aware of the
// equivalence relations. The CanonType type can be used to alter the
// canonicalization form.
//
// References
//
// BCP 47 - Tags for Identifying Languages http://tools.ietf.org/html/bcp47
//
package language // import "golang.org/x/text/language"
// TODO: explanation on how to match languages for your own locale-specific
// service.

@ -0,0 +1,39 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.2
// +build !go1.2
package language
import "sort"
func sortStable(s sort.Interface) {
ss := stableSort{
s: s,
pos: make([]int, s.Len()),
}
for i := range ss.pos {
ss.pos[i] = i
}
sort.Sort(&ss)
}
type stableSort struct {
s sort.Interface
pos []int
}
func (s *stableSort) Len() int {
return len(s.pos)
}
func (s *stableSort) Less(i, j int) bool {
return s.s.Less(i, j) || !s.s.Less(j, i) && s.pos[i] < s.pos[j]
}
func (s *stableSort) Swap(i, j int) {
s.s.Swap(i, j)
s.pos[i], s.pos[j] = s.pos[j], s.pos[i]
}

@ -0,0 +1,12 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.2
// +build go1.2
package language
import "sort"
var sortStable = sort.Stable

@ -0,0 +1,605 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen.go -output tables.go
package language
// TODO: Remove above NOTE after:
// - verifying that tables are dropped correctly (most notably matcher tables).
import (
"strings"
"golang.org/x/text/internal/language"
"golang.org/x/text/internal/language/compact"
)
// Tag represents a BCP 47 language tag. It is used to specify an instance of a
// specific language or locale. All language tag values are guaranteed to be
// well-formed.
type Tag compact.Tag
func makeTag(t language.Tag) (tag Tag) {
return Tag(compact.Make(t))
}
func (t *Tag) tag() language.Tag {
return (*compact.Tag)(t).Tag()
}
func (t *Tag) isCompact() bool {
return (*compact.Tag)(t).IsCompact()
}
// TODO: improve performance.
func (t *Tag) lang() language.Language { return t.tag().LangID }
func (t *Tag) region() language.Region { return t.tag().RegionID }
func (t *Tag) script() language.Script { return t.tag().ScriptID }
// Make is a convenience wrapper for Parse that omits the error.
// In case of an error, a sensible default is returned.
func Make(s string) Tag {
return Default.Make(s)
}
// Make is a convenience wrapper for c.Parse that omits the error.
// In case of an error, a sensible default is returned.
func (c CanonType) Make(s string) Tag {
t, _ := c.Parse(s)
return t
}
// Raw returns the raw base language, script and region, without making an
// attempt to infer their values.
func (t Tag) Raw() (b Base, s Script, r Region) {
tt := t.tag()
return Base{tt.LangID}, Script{tt.ScriptID}, Region{tt.RegionID}
}
// IsRoot returns true if t is equal to language "und".
func (t Tag) IsRoot() bool {
return compact.Tag(t).IsRoot()
}
// CanonType can be used to enable or disable various types of canonicalization.
type CanonType int
const (
// Replace deprecated base languages with their preferred replacements.
DeprecatedBase CanonType = 1 << iota
// Replace deprecated scripts with their preferred replacements.
DeprecatedScript
// Replace deprecated regions with their preferred replacements.
DeprecatedRegion
// Remove redundant scripts.
SuppressScript
// Normalize legacy encodings. This includes legacy languages defined in
// CLDR as well as bibliographic codes defined in ISO-639.
Legacy
// Map the dominant language of a macro language group to the macro language
// subtag. For example cmn -> zh.
Macro
// The CLDR flag should be used if full compatibility with CLDR is required.
// There are a few cases where language.Tag may differ from CLDR. To follow all
// of CLDR's suggestions, use All|CLDR.
CLDR
// Raw can be used to Compose or Parse without Canonicalization.
Raw CanonType = 0
// Replace all deprecated tags with their preferred replacements.
Deprecated = DeprecatedBase | DeprecatedScript | DeprecatedRegion
// All canonicalizations recommended by BCP 47.
BCP47 = Deprecated | SuppressScript
// All canonicalizations.
All = BCP47 | Legacy | Macro
// Default is the canonicalization used by Parse, Make and Compose. To
// preserve as much information as possible, canonicalizations that remove
// potentially valuable information are not included. The Matcher is
// designed to recognize similar tags that would be the same if
// they were canonicalized using All.
Default = Deprecated | Legacy
canonLang = DeprecatedBase | Legacy | Macro
// TODO: LikelyScript, LikelyRegion: suppress similar to ICU.
)
// canonicalize returns the canonicalized equivalent of the tag and
// whether there was any change.
func canonicalize(c CanonType, t language.Tag) (language.Tag, bool) {
if c == Raw {
return t, false
}
changed := false
if c&SuppressScript != 0 {
if t.LangID.SuppressScript() == t.ScriptID {
t.ScriptID = 0
changed = true
}
}
if c&canonLang != 0 {
for {
if l, aliasType := t.LangID.Canonicalize(); l != t.LangID {
switch aliasType {
case language.Legacy:
if c&Legacy != 0 {
if t.LangID == _sh && t.ScriptID == 0 {
t.ScriptID = _Latn
}
t.LangID = l
changed = true
}
case language.Macro:
if c&Macro != 0 {
// We deviate here from CLDR. The mapping "nb" -> "no"
// qualifies as a typical Macro language mapping. However,
// for legacy reasons, CLDR maps "no", the macro language
// code for Norwegian, to the dominant variant "nb". This
// change is currently under consideration for CLDR as well.
// See https://unicode.org/cldr/trac/ticket/2698 and also
// https://unicode.org/cldr/trac/ticket/1790 for some of the
// practical implications. TODO: this check could be removed
// if CLDR adopts this change.
if c&CLDR == 0 || t.LangID != _nb {
changed = true
t.LangID = l
}
}
case language.Deprecated:
if c&DeprecatedBase != 0 {
if t.LangID == _mo && t.RegionID == 0 {
t.RegionID = _MD
}
t.LangID = l
changed = true
// Other canonicalization types may still apply.
continue
}
}
} else if c&Legacy != 0 && t.LangID == _no && c&CLDR != 0 {
t.LangID = _nb
changed = true
}
break
}
}
if c&DeprecatedScript != 0 {
if t.ScriptID == _Qaai {
changed = true
t.ScriptID = _Zinh
}
}
if c&DeprecatedRegion != 0 {
if r := t.RegionID.Canonicalize(); r != t.RegionID {
changed = true
t.RegionID = r
}
}
return t, changed
}
// Canonicalize returns the canonicalized equivalent of the tag.
func (c CanonType) Canonicalize(t Tag) (Tag, error) {
// First try fast path.
if t.isCompact() {
if _, changed := canonicalize(c, compact.Tag(t).Tag()); !changed {
return t, nil
}
}
// It is unlikely that one will canonicalize a tag after matching. So do
// a slow but simple approach here.
if tag, changed := canonicalize(c, t.tag()); changed {
tag.RemakeString()
return makeTag(tag), nil
}
return t, nil
}
// Confidence indicates the level of certainty for a given return value.
// For example, Serbian may be written in Cyrillic or Latin script.
// The confidence level indicates whether a value was explicitly specified,
// whether it is typically the only possible value, or whether there is
// an ambiguity.
type Confidence int
const (
No Confidence = iota // full confidence that there was no match
Low // most likely value picked out of a set of alternatives
High // value is generally assumed to be the correct match
Exact // exact match or explicitly specified value
)
var confName = []string{"No", "Low", "High", "Exact"}
func (c Confidence) String() string {
return confName[c]
}
// String returns the canonical string representation of the language tag.
func (t Tag) String() string {
return t.tag().String()
}
// MarshalText implements encoding.TextMarshaler.
func (t Tag) MarshalText() (text []byte, err error) {
return t.tag().MarshalText()
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (t *Tag) UnmarshalText(text []byte) error {
var tag language.Tag
err := tag.UnmarshalText(text)
*t = makeTag(tag)
return err
}
// Base returns the base language of the language tag. If the base language is
// unspecified, an attempt will be made to infer it from the context.
// It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change.
func (t Tag) Base() (Base, Confidence) {
if b := t.lang(); b != 0 {
return Base{b}, Exact
}
tt := t.tag()
c := High
if tt.ScriptID == 0 && !tt.RegionID.IsCountry() {
c = Low
}
if tag, err := tt.Maximize(); err == nil && tag.LangID != 0 {
return Base{tag.LangID}, c
}
return Base{0}, No
}
// Script infers the script for the language tag. If it was not explicitly given, it will infer
// a most likely candidate.
// If more than one script is commonly used for a language, the most likely one
// is returned with a low confidence indication. For example, it returns (Cyrl, Low)
// for Serbian.
// If a script cannot be inferred (Zzzz, No) is returned. We do not use Zyyy (undetermined)
// as one would suspect from the IANA registry for BCP 47. In a Unicode context Zyyy marks
// common characters (like 1, 2, 3, '.', etc.) and is therefore more like multiple scripts.
// See https://www.unicode.org/reports/tr24/#Values for more details. Zzzz is also used for
// unknown value in CLDR. (Zzzz, Exact) is returned if Zzzz was explicitly specified.
// Note that an inferred script is never guaranteed to be the correct one. Latin is
// almost exclusively used for Afrikaans, but Arabic has been used for some texts
// in the past. Also, the script that is commonly used may change over time.
// It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change.
func (t Tag) Script() (Script, Confidence) {
if scr := t.script(); scr != 0 {
return Script{scr}, Exact
}
tt := t.tag()
sc, c := language.Script(_Zzzz), No
if scr := tt.LangID.SuppressScript(); scr != 0 {
// Note: it is not always the case that a language with a suppress
// script value is only written in one script (e.g. kk, ms, pa).
if tt.RegionID == 0 {
return Script{scr}, High
}
sc, c = scr, High
}
if tag, err := tt.Maximize(); err == nil {
if tag.ScriptID != sc {
sc, c = tag.ScriptID, Low
}
} else {
tt, _ = canonicalize(Deprecated|Macro, tt)
if tag, err := tt.Maximize(); err == nil && tag.ScriptID != sc {
sc, c = tag.ScriptID, Low
}
}
return Script{sc}, c
}
// Region returns the region for the language tag. If it was not explicitly given, it will
// infer a most likely candidate from the context.
// It uses a variant of CLDR's Add Likely Subtags algorithm. This is subject to change.
func (t Tag) Region() (Region, Confidence) {
if r := t.region(); r != 0 {
return Region{r}, Exact
}
tt := t.tag()
if tt, err := tt.Maximize(); err == nil {
return Region{tt.RegionID}, Low // TODO: differentiate between high and low.
}
tt, _ = canonicalize(Deprecated|Macro, tt)
if tag, err := tt.Maximize(); err == nil {
return Region{tag.RegionID}, Low
}
return Region{_ZZ}, No // TODO: return world instead of undetermined?
}
// Variants returns the variants specified explicitly for this language tag.
// or nil if no variant was specified.
func (t Tag) Variants() []Variant {
if !compact.Tag(t).MayHaveVariants() {
return nil
}
v := []Variant{}
x, str := "", t.tag().Variants()
for str != "" {
x, str = nextToken(str)
v = append(v, Variant{x})
}
return v
}
// Parent returns the CLDR parent of t. In CLDR, missing fields in data for a
// specific language are substituted with fields from the parent language.
// The parent for a language may change for newer versions of CLDR.
//
// Parent returns a tag for a less specific language that is mutually
// intelligible or Und if there is no such language. This may not be the same as
// simply stripping the last BCP 47 subtag. For instance, the parent of "zh-TW"
// is "zh-Hant", and the parent of "zh-Hant" is "und".
func (t Tag) Parent() Tag {
return Tag(compact.Tag(t).Parent())
}
// returns token t and the rest of the string.
func nextToken(s string) (t, tail string) {
p := strings.Index(s[1:], "-")
if p == -1 {
return s[1:], ""
}
p++
return s[1:p], s[p:]
}
// Extension is a single BCP 47 extension.
type Extension struct {
s string
}
// String returns the string representation of the extension, including the
// type tag.
func (e Extension) String() string {
return e.s
}
// ParseExtension parses s as an extension and returns it on success.
func ParseExtension(s string) (e Extension, err error) {
ext, err := language.ParseExtension(s)
return Extension{ext}, err
}
// Type returns the one-byte extension type of e. It returns 0 for the zero
// exception.
func (e Extension) Type() byte {
if e.s == "" {
return 0
}
return e.s[0]
}
// Tokens returns the list of tokens of e.
func (e Extension) Tokens() []string {
return strings.Split(e.s, "-")
}
// Extension returns the extension of type x for tag t. It will return
// false for ok if t does not have the requested extension. The returned
// extension will be invalid in this case.
func (t Tag) Extension(x byte) (ext Extension, ok bool) {
if !compact.Tag(t).MayHaveExtensions() {
return Extension{}, false
}
e, ok := t.tag().Extension(x)
return Extension{e}, ok
}
// Extensions returns all extensions of t.
func (t Tag) Extensions() []Extension {
if !compact.Tag(t).MayHaveExtensions() {
return nil
}
e := []Extension{}
for _, ext := range t.tag().Extensions() {
e = append(e, Extension{ext})
}
return e
}
// TypeForKey returns the type associated with the given key, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// TypeForKey will traverse the inheritance chain to get the correct value.
//
// If there are multiple types associated with a key, only the first will be
// returned. If there is no type associated with a key, it returns the empty
// string.
func (t Tag) TypeForKey(key string) string {
if !compact.Tag(t).MayHaveExtensions() {
if key != "rg" && key != "va" {
return ""
}
}
return t.tag().TypeForKey(key)
}
// SetTypeForKey returns a new Tag with the key set to type, where key and type
// are of the allowed values defined for the Unicode locale extension ('u') in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// An empty value removes an existing pair with the same key.
func (t Tag) SetTypeForKey(key, value string) (Tag, error) {
tt, err := t.tag().SetTypeForKey(key, value)
return makeTag(tt), err
}
// NumCompactTags is the number of compact tags. The maximum tag is
// NumCompactTags-1.
const NumCompactTags = compact.NumCompactTags
// CompactIndex returns an index, where 0 <= index < NumCompactTags, for tags
// for which data exists in the text repository.The index will change over time
// and should not be stored in persistent storage. If t does not match a compact
// index, exact will be false and the compact index will be returned for the
// first match after repeatedly taking the Parent of t.
func CompactIndex(t Tag) (index int, exact bool) {
id, exact := compact.LanguageID(compact.Tag(t))
return int(id), exact
}
var root = language.Tag{}
// Base is an ISO 639 language code, used for encoding the base language
// of a language tag.
type Base struct {
langID language.Language
}
// ParseBase parses a 2- or 3-letter ISO 639 code.
// It returns a ValueError if s is a well-formed but unknown language identifier
// or another error if another error occurred.
func ParseBase(s string) (Base, error) {
l, err := language.ParseBase(s)
return Base{l}, err
}
// String returns the BCP 47 representation of the base language.
func (b Base) String() string {
return b.langID.String()
}
// ISO3 returns the ISO 639-3 language code.
func (b Base) ISO3() string {
return b.langID.ISO3()
}
// IsPrivateUse reports whether this language code is reserved for private use.
func (b Base) IsPrivateUse() bool {
return b.langID.IsPrivateUse()
}
// Script is a 4-letter ISO 15924 code for representing scripts.
// It is idiomatically represented in title case.
type Script struct {
scriptID language.Script
}
// ParseScript parses a 4-letter ISO 15924 code.
// It returns a ValueError if s is a well-formed but unknown script identifier
// or another error if another error occurred.
func ParseScript(s string) (Script, error) {
sc, err := language.ParseScript(s)
return Script{sc}, err
}
// String returns the script code in title case.
// It returns "Zzzz" for an unspecified script.
func (s Script) String() string {
return s.scriptID.String()
}
// IsPrivateUse reports whether this script code is reserved for private use.
func (s Script) IsPrivateUse() bool {
return s.scriptID.IsPrivateUse()
}
// Region is an ISO 3166-1 or UN M.49 code for representing countries and regions.
type Region struct {
regionID language.Region
}
// EncodeM49 returns the Region for the given UN M.49 code.
// It returns an error if r is not a valid code.
func EncodeM49(r int) (Region, error) {
rid, err := language.EncodeM49(r)
return Region{rid}, err
}
// ParseRegion parses a 2- or 3-letter ISO 3166-1 or a UN M.49 code.
// It returns a ValueError if s is a well-formed but unknown region identifier
// or another error if another error occurred.
func ParseRegion(s string) (Region, error) {
r, err := language.ParseRegion(s)
return Region{r}, err
}
// String returns the BCP 47 representation for the region.
// It returns "ZZ" for an unspecified region.
func (r Region) String() string {
return r.regionID.String()
}
// ISO3 returns the 3-letter ISO code of r.
// Note that not all regions have a 3-letter ISO code.
// In such cases this method returns "ZZZ".
func (r Region) ISO3() string {
return r.regionID.ISO3()
}
// M49 returns the UN M.49 encoding of r, or 0 if this encoding
// is not defined for r.
func (r Region) M49() int {
return r.regionID.M49()
}
// IsPrivateUse reports whether r has the ISO 3166 User-assigned status. This
// may include private-use tags that are assigned by CLDR and used in this
// implementation. So IsPrivateUse and IsCountry can be simultaneously true.
func (r Region) IsPrivateUse() bool {
return r.regionID.IsPrivateUse()
}
// IsCountry returns whether this region is a country or autonomous area. This
// includes non-standard definitions from CLDR.
func (r Region) IsCountry() bool {
return r.regionID.IsCountry()
}
// IsGroup returns whether this region defines a collection of regions. This
// includes non-standard definitions from CLDR.
func (r Region) IsGroup() bool {
return r.regionID.IsGroup()
}
// Contains returns whether Region c is contained by Region r. It returns true
// if c == r.
func (r Region) Contains(c Region) bool {
return r.regionID.Contains(c.regionID)
}
// TLD returns the country code top-level domain (ccTLD). UK is returned for GB.
// In all other cases it returns either the region itself or an error.
//
// This method may return an error for a region for which there exists a
// canonical form with a ccTLD. To get that ccTLD canonicalize r first. The
// region will already be canonicalized it was obtained from a Tag that was
// obtained using any of the default methods.
func (r Region) TLD() (Region, error) {
tld, err := r.regionID.TLD()
return Region{tld}, err
}
// Canonicalize returns the region or a possible replacement if the region is
// deprecated. It will not return a replacement for deprecated regions that
// are split into multiple regions.
func (r Region) Canonicalize() Region {
return Region{r.regionID.Canonicalize()}
}
// Variant represents a registered variant of a language as defined by BCP 47.
type Variant struct {
variant string
}
// ParseVariant parses and returns a Variant. An error is returned if s is not
// a valid variant.
func ParseVariant(s string) (Variant, error) {
v, err := language.ParseVariant(s)
return Variant{v.String()}, err
}
// String returns the string representation of the variant.
func (v Variant) String() string {
return v.variant
}

@ -0,0 +1,735 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"errors"
"strings"
"golang.org/x/text/internal/language"
)
// A MatchOption configures a Matcher.
type MatchOption func(*matcher)
// PreferSameScript will, in the absence of a match, result in the first
// preferred tag with the same script as a supported tag to match this supported
// tag. The default is currently true, but this may change in the future.
func PreferSameScript(preferSame bool) MatchOption {
return func(m *matcher) { m.preferSameScript = preferSame }
}
// TODO(v1.0.0): consider making Matcher a concrete type, instead of interface.
// There doesn't seem to be too much need for multiple types.
// Making it a concrete type allows MatchStrings to be a method, which will
// improve its discoverability.
// MatchStrings parses and matches the given strings until one of them matches
// the language in the Matcher. A string may be an Accept-Language header as
// handled by ParseAcceptLanguage. The default language is returned if no
// other language matched.
func MatchStrings(m Matcher, lang ...string) (tag Tag, index int) {
for _, accept := range lang {
desired, _, err := ParseAcceptLanguage(accept)
if err != nil {
continue
}
if tag, index, conf := m.Match(desired...); conf != No {
return tag, index
}
}
tag, index, _ = m.Match()
return
}
// Matcher is the interface that wraps the Match method.
//
// Match returns the best match for any of the given tags, along with
// a unique index associated with the returned tag and a confidence
// score.
type Matcher interface {
Match(t ...Tag) (tag Tag, index int, c Confidence)
}
// Comprehends reports the confidence score for a speaker of a given language
// to being able to comprehend the written form of an alternative language.
func Comprehends(speaker, alternative Tag) Confidence {
_, _, c := NewMatcher([]Tag{alternative}).Match(speaker)
return c
}
// NewMatcher returns a Matcher that matches an ordered list of preferred tags
// against a list of supported tags based on written intelligibility, closeness
// of dialect, equivalence of subtags and various other rules. It is initialized
// with the list of supported tags. The first element is used as the default
// value in case no match is found.
//
// Its Match method matches the first of the given Tags to reach a certain
// confidence threshold. The tags passed to Match should therefore be specified
// in order of preference. Extensions are ignored for matching.
//
// The index returned by the Match method corresponds to the index of the
// matched tag in t, but is augmented with the Unicode extension ('u')of the
// corresponding preferred tag. This allows user locale options to be passed
// transparently.
func NewMatcher(t []Tag, options ...MatchOption) Matcher {
return newMatcher(t, options)
}
func (m *matcher) Match(want ...Tag) (t Tag, index int, c Confidence) {
var tt language.Tag
match, w, c := m.getBest(want...)
if match != nil {
tt, index = match.tag, match.index
} else {
// TODO: this should be an option
tt = m.default_.tag
if m.preferSameScript {
outer:
for _, w := range want {
script, _ := w.Script()
if script.scriptID == 0 {
// Don't do anything if there is no script, such as with
// private subtags.
continue
}
for i, h := range m.supported {
if script.scriptID == h.maxScript {
tt, index = h.tag, i
break outer
}
}
}
}
// TODO: select first language tag based on script.
}
if w.RegionID != tt.RegionID && w.RegionID != 0 {
if w.RegionID != 0 && tt.RegionID != 0 && tt.RegionID.Contains(w.RegionID) {
tt.RegionID = w.RegionID
tt.RemakeString()
} else if r := w.RegionID.String(); len(r) == 2 {
// TODO: also filter macro and deprecated.
tt, _ = tt.SetTypeForKey("rg", strings.ToLower(r)+"zzzz")
}
}
// Copy options from the user-provided tag into the result tag. This is hard
// to do after the fact, so we do it here.
// TODO: add in alternative variants to -u-va-.
// TODO: add preferred region to -u-rg-.
if e := w.Extensions(); len(e) > 0 {
b := language.Builder{}
b.SetTag(tt)
for _, e := range e {
b.AddExt(e)
}
tt = b.Make()
}
return makeTag(tt), index, c
}
// ErrMissingLikelyTagsData indicates no information was available
// to compute likely values of missing tags.
var ErrMissingLikelyTagsData = errors.New("missing likely tags data")
// func (t *Tag) setTagsFrom(id Tag) {
// t.LangID = id.LangID
// t.ScriptID = id.ScriptID
// t.RegionID = id.RegionID
// }
// Tag Matching
// CLDR defines an algorithm for finding the best match between two sets of language
// tags. The basic algorithm defines how to score a possible match and then find
// the match with the best score
// (see https://www.unicode.org/reports/tr35/#LanguageMatching).
// Using scoring has several disadvantages. The scoring obfuscates the importance of
// the various factors considered, making the algorithm harder to understand. Using
// scoring also requires the full score to be computed for each pair of tags.
//
// We will use a different algorithm which aims to have the following properties:
// - clarity on the precedence of the various selection factors, and
// - improved performance by allowing early termination of a comparison.
//
// Matching algorithm (overview)
// Input:
// - supported: a set of supported tags
// - default: the default tag to return in case there is no match
// - desired: list of desired tags, ordered by preference, starting with
// the most-preferred.
//
// Algorithm:
// 1) Set the best match to the lowest confidence level
// 2) For each tag in "desired":
// a) For each tag in "supported":
// 1) compute the match between the two tags.
// 2) if the match is better than the previous best match, replace it
// with the new match. (see next section)
// b) if the current best match is Exact and pin is true the result will be
// frozen to the language found thusfar, although better matches may
// still be found for the same language.
// 3) If the best match so far is below a certain threshold, return "default".
//
// Ranking:
// We use two phases to determine whether one pair of tags are a better match
// than another pair of tags. First, we determine a rough confidence level. If the
// levels are different, the one with the highest confidence wins.
// Second, if the rough confidence levels are identical, we use a set of tie-breaker
// rules.
//
// The confidence level of matching a pair of tags is determined by finding the
// lowest confidence level of any matches of the corresponding subtags (the
// result is deemed as good as its weakest link).
// We define the following levels:
// Exact - An exact match of a subtag, before adding likely subtags.
// MaxExact - An exact match of a subtag, after adding likely subtags.
// [See Note 2].
// High - High level of mutual intelligibility between different subtag
// variants.
// Low - Low level of mutual intelligibility between different subtag
// variants.
// No - No mutual intelligibility.
//
// The following levels can occur for each type of subtag:
// Base: Exact, MaxExact, High, Low, No
// Script: Exact, MaxExact [see Note 3], Low, No
// Region: Exact, MaxExact, High
// Variant: Exact, High
// Private: Exact, No
//
// Any result with a confidence level of Low or higher is deemed a possible match.
// Once a desired tag matches any of the supported tags with a level of MaxExact
// or higher, the next desired tag is not considered (see Step 2.b).
// Note that CLDR provides languageMatching data that defines close equivalence
// classes for base languages, scripts and regions.
//
// Tie-breaking
// If we get the same confidence level for two matches, we apply a sequence of
// tie-breaking rules. The first that succeeds defines the result. The rules are
// applied in the following order.
// 1) Original language was defined and was identical.
// 2) Original region was defined and was identical.
// 3) Distance between two maximized regions was the smallest.
// 4) Original script was defined and was identical.
// 5) Distance from want tag to have tag using the parent relation [see Note 5.]
// If there is still no winner after these rules are applied, the first match
// found wins.
//
// Notes:
// [2] In practice, as matching of Exact is done in a separate phase from
// matching the other levels, we reuse the Exact level to mean MaxExact in
// the second phase. As a consequence, we only need the levels defined by
// the Confidence type. The MaxExact confidence level is mapped to High in
// the public API.
// [3] We do not differentiate between maximized script values that were derived
// from suppressScript versus most likely tag data. We determined that in
// ranking the two, one ranks just after the other. Moreover, the two cannot
// occur concurrently. As a consequence, they are identical for practical
// purposes.
// [4] In case of deprecated, macro-equivalents and legacy mappings, we assign
// the MaxExact level to allow iw vs he to still be a closer match than
// en-AU vs en-US, for example.
// [5] In CLDR a locale inherits fields that are unspecified for this locale
// from its parent. Therefore, if a locale is a parent of another locale,
// it is a strong measure for closeness, especially when no other tie
// breaker rule applies. One could also argue it is inconsistent, for
// example, when pt-AO matches pt (which CLDR equates with pt-BR), even
// though its parent is pt-PT according to the inheritance rules.
//
// Implementation Details:
// There are several performance considerations worth pointing out. Most notably,
// we preprocess as much as possible (within reason) at the time of creation of a
// matcher. This includes:
// - creating a per-language map, which includes data for the raw base language
// and its canonicalized variant (if applicable),
// - expanding entries for the equivalence classes defined in CLDR's
// languageMatch data.
// The per-language map ensures that typically only a very small number of tags
// need to be considered. The pre-expansion of canonicalized subtags and
// equivalence classes reduces the amount of map lookups that need to be done at
// runtime.
// matcher keeps a set of supported language tags, indexed by language.
type matcher struct {
default_ *haveTag
supported []*haveTag
index map[language.Language]*matchHeader
passSettings bool
preferSameScript bool
}
// matchHeader has the lists of tags for exact matches and matches based on
// maximized and canonicalized tags for a given language.
type matchHeader struct {
haveTags []*haveTag
original bool
}
// haveTag holds a supported Tag and its maximized script and region. The maximized
// or canonicalized language is not stored as it is not needed during matching.
type haveTag struct {
tag language.Tag
// index of this tag in the original list of supported tags.
index int
// conf is the maximum confidence that can result from matching this haveTag.
// When conf < Exact this means it was inserted after applying a CLDR equivalence rule.
conf Confidence
// Maximized region and script.
maxRegion language.Region
maxScript language.Script
// altScript may be checked as an alternative match to maxScript. If altScript
// matches, the confidence level for this match is Low. Theoretically there
// could be multiple alternative scripts. This does not occur in practice.
altScript language.Script
// nextMax is the index of the next haveTag with the same maximized tags.
nextMax uint16
}
func makeHaveTag(tag language.Tag, index int) (haveTag, language.Language) {
max := tag
if tag.LangID != 0 || tag.RegionID != 0 || tag.ScriptID != 0 {
max, _ = canonicalize(All, max)
max, _ = max.Maximize()
max.RemakeString()
}
return haveTag{tag, index, Exact, max.RegionID, max.ScriptID, altScript(max.LangID, max.ScriptID), 0}, max.LangID
}
// altScript returns an alternative script that may match the given script with
// a low confidence. At the moment, the langMatch data allows for at most one
// script to map to another and we rely on this to keep the code simple.
func altScript(l language.Language, s language.Script) language.Script {
for _, alt := range matchScript {
// TODO: also match cases where language is not the same.
if (language.Language(alt.wantLang) == l || language.Language(alt.haveLang) == l) &&
language.Script(alt.haveScript) == s {
return language.Script(alt.wantScript)
}
}
return 0
}
// addIfNew adds a haveTag to the list of tags only if it is a unique tag.
// Tags that have the same maximized values are linked by index.
func (h *matchHeader) addIfNew(n haveTag, exact bool) {
h.original = h.original || exact
// Don't add new exact matches.
for _, v := range h.haveTags {
if equalsRest(v.tag, n.tag) {
return
}
}
// Allow duplicate maximized tags, but create a linked list to allow quickly
// comparing the equivalents and bail out.
for i, v := range h.haveTags {
if v.maxScript == n.maxScript &&
v.maxRegion == n.maxRegion &&
v.tag.VariantOrPrivateUseTags() == n.tag.VariantOrPrivateUseTags() {
for h.haveTags[i].nextMax != 0 {
i = int(h.haveTags[i].nextMax)
}
h.haveTags[i].nextMax = uint16(len(h.haveTags))
break
}
}
h.haveTags = append(h.haveTags, &n)
}
// header returns the matchHeader for the given language. It creates one if
// it doesn't already exist.
func (m *matcher) header(l language.Language) *matchHeader {
if h := m.index[l]; h != nil {
return h
}
h := &matchHeader{}
m.index[l] = h
return h
}
func toConf(d uint8) Confidence {
if d <= 10 {
return High
}
if d < 30 {
return Low
}
return No
}
// newMatcher builds an index for the given supported tags and returns it as
// a matcher. It also expands the index by considering various equivalence classes
// for a given tag.
func newMatcher(supported []Tag, options []MatchOption) *matcher {
m := &matcher{
index: make(map[language.Language]*matchHeader),
preferSameScript: true,
}
for _, o := range options {
o(m)
}
if len(supported) == 0 {
m.default_ = &haveTag{}
return m
}
// Add supported languages to the index. Add exact matches first to give
// them precedence.
for i, tag := range supported {
tt := tag.tag()
pair, _ := makeHaveTag(tt, i)
m.header(tt.LangID).addIfNew(pair, true)
m.supported = append(m.supported, &pair)
}
m.default_ = m.header(supported[0].lang()).haveTags[0]
// Keep these in two different loops to support the case that two equivalent
// languages are distinguished, such as iw and he.
for i, tag := range supported {
tt := tag.tag()
pair, max := makeHaveTag(tt, i)
if max != tt.LangID {
m.header(max).addIfNew(pair, true)
}
}
// update is used to add indexes in the map for equivalent languages.
// update will only add entries to original indexes, thus not computing any
// transitive relations.
update := func(want, have uint16, conf Confidence) {
if hh := m.index[language.Language(have)]; hh != nil {
if !hh.original {
return
}
hw := m.header(language.Language(want))
for _, ht := range hh.haveTags {
v := *ht
if conf < v.conf {
v.conf = conf
}
v.nextMax = 0 // this value needs to be recomputed
if v.altScript != 0 {
v.altScript = altScript(language.Language(want), v.maxScript)
}
hw.addIfNew(v, conf == Exact && hh.original)
}
}
}
// Add entries for languages with mutual intelligibility as defined by CLDR's
// languageMatch data.
for _, ml := range matchLang {
update(ml.want, ml.have, toConf(ml.distance))
if !ml.oneway {
update(ml.have, ml.want, toConf(ml.distance))
}
}
// Add entries for possible canonicalizations. This is an optimization to
// ensure that only one map lookup needs to be done at runtime per desired tag.
// First we match deprecated equivalents. If they are perfect equivalents
// (their canonicalization simply substitutes a different language code, but
// nothing else), the match confidence is Exact, otherwise it is High.
for i, lm := range language.AliasMap {
// If deprecated codes match and there is no fiddling with the script or
// or region, we consider it an exact match.
conf := Exact
if language.AliasTypes[i] != language.Macro {
if !isExactEquivalent(language.Language(lm.From)) {
conf = High
}
update(lm.To, lm.From, conf)
}
update(lm.From, lm.To, conf)
}
return m
}
// getBest gets the best matching tag in m for any of the given tags, taking into
// account the order of preference of the given tags.
func (m *matcher) getBest(want ...Tag) (got *haveTag, orig language.Tag, c Confidence) {
best := bestMatch{}
for i, ww := range want {
w := ww.tag()
var max language.Tag
// Check for exact match first.
h := m.index[w.LangID]
if w.LangID != 0 {
if h == nil {
continue
}
// Base language is defined.
max, _ = canonicalize(Legacy|Deprecated|Macro, w)
// A region that is added through canonicalization is stronger than
// a maximized region: set it in the original (e.g. mo -> ro-MD).
if w.RegionID != max.RegionID {
w.RegionID = max.RegionID
}
// TODO: should we do the same for scripts?
// See test case: en, sr, nl ; sh ; sr
max, _ = max.Maximize()
} else {
// Base language is not defined.
if h != nil {
for i := range h.haveTags {
have := h.haveTags[i]
if equalsRest(have.tag, w) {
return have, w, Exact
}
}
}
if w.ScriptID == 0 && w.RegionID == 0 {
// We skip all tags matching und for approximate matching, including
// private tags.
continue
}
max, _ = w.Maximize()
if h = m.index[max.LangID]; h == nil {
continue
}
}
pin := true
for _, t := range want[i+1:] {
if w.LangID == t.lang() {
pin = false
break
}
}
// Check for match based on maximized tag.
for i := range h.haveTags {
have := h.haveTags[i]
best.update(have, w, max.ScriptID, max.RegionID, pin)
if best.conf == Exact {
for have.nextMax != 0 {
have = h.haveTags[have.nextMax]
best.update(have, w, max.ScriptID, max.RegionID, pin)
}
return best.have, best.want, best.conf
}
}
}
if best.conf <= No {
if len(want) != 0 {
return nil, want[0].tag(), No
}
return nil, language.Tag{}, No
}
return best.have, best.want, best.conf
}
// bestMatch accumulates the best match so far.
type bestMatch struct {
have *haveTag
want language.Tag
conf Confidence
pinnedRegion language.Region
pinLanguage bool
sameRegionGroup bool
// Cached results from applying tie-breaking rules.
origLang bool
origReg bool
paradigmReg bool
regGroupDist uint8
origScript bool
}
// update updates the existing best match if the new pair is considered to be a
// better match. To determine if the given pair is a better match, it first
// computes the rough confidence level. If this surpasses the current match, it
// will replace it and update the tie-breaker rule cache. If there is a tie, it
// proceeds with applying a series of tie-breaker rules. If there is no
// conclusive winner after applying the tie-breaker rules, it leaves the current
// match as the preferred match.
//
// If pin is true and have and tag are a strong match, it will henceforth only
// consider matches for this language. This corresponds to the nothing that most
// users have a strong preference for the first defined language. A user can
// still prefer a second language over a dialect of the preferred language by
// explicitly specifying dialects, e.g. "en, nl, en-GB". In this case pin should
// be false.
func (m *bestMatch) update(have *haveTag, tag language.Tag, maxScript language.Script, maxRegion language.Region, pin bool) {
// Bail if the maximum attainable confidence is below that of the current best match.
c := have.conf
if c < m.conf {
return
}
// Don't change the language once we already have found an exact match.
if m.pinLanguage && tag.LangID != m.want.LangID {
return
}
// Pin the region group if we are comparing tags for the same language.
if tag.LangID == m.want.LangID && m.sameRegionGroup {
_, sameGroup := regionGroupDist(m.pinnedRegion, have.maxRegion, have.maxScript, m.want.LangID)
if !sameGroup {
return
}
}
if c == Exact && have.maxScript == maxScript {
// If there is another language and then another entry of this language,
// don't pin anything, otherwise pin the language.
m.pinLanguage = pin
}
if equalsRest(have.tag, tag) {
} else if have.maxScript != maxScript {
// There is usually very little comprehension between different scripts.
// In a few cases there may still be Low comprehension. This possibility
// is pre-computed and stored in have.altScript.
if Low < m.conf || have.altScript != maxScript {
return
}
c = Low
} else if have.maxRegion != maxRegion {
if High < c {
// There is usually a small difference between languages across regions.
c = High
}
}
// We store the results of the computations of the tie-breaker rules along
// with the best match. There is no need to do the checks once we determine
// we have a winner, but we do still need to do the tie-breaker computations.
// We use "beaten" to keep track if we still need to do the checks.
beaten := false // true if the new pair defeats the current one.
if c != m.conf {
if c < m.conf {
return
}
beaten = true
}
// Tie-breaker rules:
// We prefer if the pre-maximized language was specified and identical.
origLang := have.tag.LangID == tag.LangID && tag.LangID != 0
if !beaten && m.origLang != origLang {
if m.origLang {
return
}
beaten = true
}
// We prefer if the pre-maximized region was specified and identical.
origReg := have.tag.RegionID == tag.RegionID && tag.RegionID != 0
if !beaten && m.origReg != origReg {
if m.origReg {
return
}
beaten = true
}
regGroupDist, sameGroup := regionGroupDist(have.maxRegion, maxRegion, maxScript, tag.LangID)
if !beaten && m.regGroupDist != regGroupDist {
if regGroupDist > m.regGroupDist {
return
}
beaten = true
}
paradigmReg := isParadigmLocale(tag.LangID, have.maxRegion)
if !beaten && m.paradigmReg != paradigmReg {
if !paradigmReg {
return
}
beaten = true
}
// Next we prefer if the pre-maximized script was specified and identical.
origScript := have.tag.ScriptID == tag.ScriptID && tag.ScriptID != 0
if !beaten && m.origScript != origScript {
if m.origScript {
return
}
beaten = true
}
// Update m to the newly found best match.
if beaten {
m.have = have
m.want = tag
m.conf = c
m.pinnedRegion = maxRegion
m.sameRegionGroup = sameGroup
m.origLang = origLang
m.origReg = origReg
m.paradigmReg = paradigmReg
m.origScript = origScript
m.regGroupDist = regGroupDist
}
}
func isParadigmLocale(lang language.Language, r language.Region) bool {
for _, e := range paradigmLocales {
if language.Language(e[0]) == lang && (r == language.Region(e[1]) || r == language.Region(e[2])) {
return true
}
}
return false
}
// regionGroupDist computes the distance between two regions based on their
// CLDR grouping.
func regionGroupDist(a, b language.Region, script language.Script, lang language.Language) (dist uint8, same bool) {
const defaultDistance = 4
aGroup := uint(regionToGroups[a]) << 1
bGroup := uint(regionToGroups[b]) << 1
for _, ri := range matchRegion {
if language.Language(ri.lang) == lang && (ri.script == 0 || language.Script(ri.script) == script) {
group := uint(1 << (ri.group &^ 0x80))
if 0x80&ri.group == 0 {
if aGroup&bGroup&group != 0 { // Both regions are in the group.
return ri.distance, ri.distance == defaultDistance
}
} else {
if (aGroup|bGroup)&group == 0 { // Both regions are not in the group.
return ri.distance, ri.distance == defaultDistance
}
}
}
}
return defaultDistance, true
}
// equalsRest compares everything except the language.
func equalsRest(a, b language.Tag) bool {
// TODO: don't include extensions in this comparison. To do this efficiently,
// though, we should handle private tags separately.
return a.ScriptID == b.ScriptID && a.RegionID == b.RegionID && a.VariantOrPrivateUseTags() == b.VariantOrPrivateUseTags()
}
// isExactEquivalent returns true if canonicalizing the language will not alter
// the script or region of a tag.
func isExactEquivalent(l language.Language) bool {
for _, o := range notEquivalent {
if o == l {
return false
}
}
return true
}
var notEquivalent []language.Language
func init() {
// Create a list of all languages for which canonicalization may alter the
// script or region.
for _, lm := range language.AliasMap {
tag := language.Tag{LangID: language.Language(lm.From)}
if tag, _ = canonicalize(All, tag); tag.ScriptID != 0 || tag.RegionID != 0 {
notEquivalent = append(notEquivalent, language.Language(lm.From))
}
}
// Maximize undefined regions of paradigm locales.
for i, v := range paradigmLocales {
t := language.Tag{LangID: language.Language(v[0])}
max, _ := t.Maximize()
if v[1] == 0 {
paradigmLocales[i][1] = uint16(max.RegionID)
}
if v[2] == 0 {
paradigmLocales[i][2] = uint16(max.RegionID)
}
}
}

@ -0,0 +1,250 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import (
"errors"
"strconv"
"strings"
"golang.org/x/text/internal/language"
)
// ValueError is returned by any of the parsing functions when the
// input is well-formed but the respective subtag is not recognized
// as a valid value.
type ValueError interface {
error
// Subtag returns the subtag for which the error occurred.
Subtag() string
}
// Parse parses the given BCP 47 string and returns a valid Tag. If parsing
// failed it returns an error and any part of the tag that could be parsed.
// If parsing succeeded but an unknown value was found, it returns
// ValueError. The Tag returned in this case is just stripped of the unknown
// value. All other values are preserved. It accepts tags in the BCP 47 format
// and extensions to this standard defined in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// The resulting tag is canonicalized using the default canonicalization type.
func Parse(s string) (t Tag, err error) {
return Default.Parse(s)
}
// Parse parses the given BCP 47 string and returns a valid Tag. If parsing
// failed it returns an error and any part of the tag that could be parsed.
// If parsing succeeded but an unknown value was found, it returns
// ValueError. The Tag returned in this case is just stripped of the unknown
// value. All other values are preserved. It accepts tags in the BCP 47 format
// and extensions to this standard defined in
// https://www.unicode.org/reports/tr35/#Unicode_Language_and_Locale_Identifiers.
// The resulting tag is canonicalized using the canonicalization type c.
func (c CanonType) Parse(s string) (t Tag, err error) {
defer func() {
if recover() != nil {
t = Tag{}
err = language.ErrSyntax
}
}()
tt, err := language.Parse(s)
if err != nil {
return makeTag(tt), err
}
tt, changed := canonicalize(c, tt)
if changed {
tt.RemakeString()
}
return makeTag(tt), err
}
// Compose creates a Tag from individual parts, which may be of type Tag, Base,
// Script, Region, Variant, []Variant, Extension, []Extension or error. If a
// Base, Script or Region or slice of type Variant or Extension is passed more
// than once, the latter will overwrite the former. Variants and Extensions are
// accumulated, but if two extensions of the same type are passed, the latter
// will replace the former. For -u extensions, though, the key-type pairs are
// added, where later values overwrite older ones. A Tag overwrites all former
// values and typically only makes sense as the first argument. The resulting
// tag is returned after canonicalizing using the Default CanonType. If one or
// more errors are encountered, one of the errors is returned.
func Compose(part ...interface{}) (t Tag, err error) {
return Default.Compose(part...)
}
// Compose creates a Tag from individual parts, which may be of type Tag, Base,
// Script, Region, Variant, []Variant, Extension, []Extension or error. If a
// Base, Script or Region or slice of type Variant or Extension is passed more
// than once, the latter will overwrite the former. Variants and Extensions are
// accumulated, but if two extensions of the same type are passed, the latter
// will replace the former. For -u extensions, though, the key-type pairs are
// added, where later values overwrite older ones. A Tag overwrites all former
// values and typically only makes sense as the first argument. The resulting
// tag is returned after canonicalizing using CanonType c. If one or more errors
// are encountered, one of the errors is returned.
func (c CanonType) Compose(part ...interface{}) (t Tag, err error) {
defer func() {
if recover() != nil {
t = Tag{}
err = language.ErrSyntax
}
}()
var b language.Builder
if err = update(&b, part...); err != nil {
return und, err
}
b.Tag, _ = canonicalize(c, b.Tag)
return makeTag(b.Make()), err
}
var errInvalidArgument = errors.New("invalid Extension or Variant")
func update(b *language.Builder, part ...interface{}) (err error) {
for _, x := range part {
switch v := x.(type) {
case Tag:
b.SetTag(v.tag())
case Base:
b.Tag.LangID = v.langID
case Script:
b.Tag.ScriptID = v.scriptID
case Region:
b.Tag.RegionID = v.regionID
case Variant:
if v.variant == "" {
err = errInvalidArgument
break
}
b.AddVariant(v.variant)
case Extension:
if v.s == "" {
err = errInvalidArgument
break
}
b.SetExt(v.s)
case []Variant:
b.ClearVariants()
for _, v := range v {
b.AddVariant(v.variant)
}
case []Extension:
b.ClearExtensions()
for _, e := range v {
b.SetExt(e.s)
}
// TODO: support parsing of raw strings based on morphology or just extensions?
case error:
if v != nil {
err = v
}
}
}
return
}
var errInvalidWeight = errors.New("ParseAcceptLanguage: invalid weight")
// ParseAcceptLanguage parses the contents of an Accept-Language header as
// defined in http://www.ietf.org/rfc/rfc2616.txt and returns a list of Tags and
// a list of corresponding quality weights. It is more permissive than RFC 2616
// and may return non-nil slices even if the input is not valid.
// The Tags will be sorted by highest weight first and then by first occurrence.
// Tags with a weight of zero will be dropped. An error will be returned if the
// input could not be parsed.
func ParseAcceptLanguage(s string) (tag []Tag, q []float32, err error) {
defer func() {
if recover() != nil {
tag = nil
q = nil
err = language.ErrSyntax
}
}()
var entry string
for s != "" {
if entry, s = split(s, ','); entry == "" {
continue
}
entry, weight := split(entry, ';')
// Scan the language.
t, err := Parse(entry)
if err != nil {
id, ok := acceptFallback[entry]
if !ok {
return nil, nil, err
}
t = makeTag(language.Tag{LangID: id})
}
// Scan the optional weight.
w := 1.0
if weight != "" {
weight = consume(weight, 'q')
weight = consume(weight, '=')
// consume returns the empty string when a token could not be
// consumed, resulting in an error for ParseFloat.
if w, err = strconv.ParseFloat(weight, 32); err != nil {
return nil, nil, errInvalidWeight
}
// Drop tags with a quality weight of 0.
if w <= 0 {
continue
}
}
tag = append(tag, t)
q = append(q, float32(w))
}
sortStable(&tagSort{tag, q})
return tag, q, nil
}
// consume removes a leading token c from s and returns the result or the empty
// string if there is no such token.
func consume(s string, c byte) string {
if s == "" || s[0] != c {
return ""
}
return strings.TrimSpace(s[1:])
}
func split(s string, c byte) (head, tail string) {
if i := strings.IndexByte(s, c); i >= 0 {
return strings.TrimSpace(s[:i]), strings.TrimSpace(s[i+1:])
}
return strings.TrimSpace(s), ""
}
// Add hack mapping to deal with a small number of cases that occur
// in Accept-Language (with reasonable frequency).
var acceptFallback = map[string]language.Language{
"english": _en,
"deutsch": _de,
"italian": _it,
"french": _fr,
"*": _mul, // defined in the spec to match all languages.
}
type tagSort struct {
tag []Tag
q []float32
}
func (s *tagSort) Len() int {
return len(s.q)
}
func (s *tagSort) Less(i, j int) bool {
return s.q[i] > s.q[j]
}
func (s *tagSort) Swap(i, j int) {
s.tag[i], s.tag[j] = s.tag[j], s.tag[i]
s.q[i], s.q[j] = s.q[j], s.q[i]
}

@ -0,0 +1,298 @@
// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
package language
// CLDRVersion is the CLDR version from which the tables in this package are derived.
const CLDRVersion = "32"
const (
_de = 269
_en = 313
_fr = 350
_it = 505
_mo = 784
_no = 879
_nb = 839
_pt = 960
_sh = 1031
_mul = 806
_und = 0
)
const (
_001 = 1
_419 = 31
_BR = 65
_CA = 73
_ES = 110
_GB = 123
_MD = 188
_PT = 238
_UK = 306
_US = 309
_ZZ = 357
_XA = 323
_XC = 325
_XK = 333
)
const (
_Latn = 90
_Hani = 57
_Hans = 59
_Hant = 60
_Qaaa = 143
_Qaai = 151
_Qabx = 192
_Zinh = 245
_Zyyy = 250
_Zzzz = 251
)
var regionToGroups = []uint8{ // 358 elements
// Entry 0 - 3F
0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00,
0x00, 0x04, 0x00, 0x00, 0x04, 0x01, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x04,
// Entry 40 - 7F
0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x04, 0x00, 0x04, 0x00,
0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x00, 0x08,
0x00, 0x04, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x04, 0x00,
// Entry 80 - BF
0x00, 0x00, 0x04, 0x00, 0x00, 0x04, 0x00, 0x00,
0x00, 0x04, 0x01, 0x00, 0x04, 0x02, 0x00, 0x04,
0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x04, 0x00,
// Entry C0 - FF
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x01,
0x04, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x04, 0x00, 0x05, 0x00, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Entry 100 - 13F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x00, 0x00, 0x04, 0x04, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x00, 0x05, 0x04, 0x00,
0x00, 0x04, 0x00, 0x04, 0x04, 0x05, 0x00, 0x00,
// Entry 140 - 17F
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
} // Size: 382 bytes
var paradigmLocales = [][3]uint16{ // 3 elements
0: [3]uint16{0x139, 0x0, 0x7b},
1: [3]uint16{0x13e, 0x0, 0x1f},
2: [3]uint16{0x3c0, 0x41, 0xee},
} // Size: 42 bytes
type mutualIntelligibility struct {
want uint16
have uint16
distance uint8
oneway bool
}
type scriptIntelligibility struct {
wantLang uint16
haveLang uint16
wantScript uint8
haveScript uint8
distance uint8
}
type regionIntelligibility struct {
lang uint16
script uint8
group uint8
distance uint8
}
// matchLang holds pairs of langIDs of base languages that are typically
// mutually intelligible. Each pair is associated with a confidence and
// whether the intelligibility goes one or both ways.
var matchLang = []mutualIntelligibility{ // 113 elements
0: {want: 0x1d1, have: 0xb7, distance: 0x4, oneway: false},
1: {want: 0x407, have: 0xb7, distance: 0x4, oneway: false},
2: {want: 0x407, have: 0x1d1, distance: 0x4, oneway: false},
3: {want: 0x407, have: 0x432, distance: 0x4, oneway: false},
4: {want: 0x43a, have: 0x1, distance: 0x4, oneway: false},
5: {want: 0x1a3, have: 0x10d, distance: 0x4, oneway: true},
6: {want: 0x295, have: 0x10d, distance: 0x4, oneway: true},
7: {want: 0x101, have: 0x36f, distance: 0x8, oneway: false},
8: {want: 0x101, have: 0x347, distance: 0x8, oneway: false},
9: {want: 0x5, have: 0x3e2, distance: 0xa, oneway: true},
10: {want: 0xd, have: 0x139, distance: 0xa, oneway: true},
11: {want: 0x16, have: 0x367, distance: 0xa, oneway: true},
12: {want: 0x21, have: 0x139, distance: 0xa, oneway: true},
13: {want: 0x56, have: 0x13e, distance: 0xa, oneway: true},
14: {want: 0x58, have: 0x3e2, distance: 0xa, oneway: true},
15: {want: 0x71, have: 0x3e2, distance: 0xa, oneway: true},
16: {want: 0x75, have: 0x139, distance: 0xa, oneway: true},
17: {want: 0x82, have: 0x1be, distance: 0xa, oneway: true},
18: {want: 0xa5, have: 0x139, distance: 0xa, oneway: true},
19: {want: 0xb2, have: 0x15e, distance: 0xa, oneway: true},
20: {want: 0xdd, have: 0x153, distance: 0xa, oneway: true},
21: {want: 0xe5, have: 0x139, distance: 0xa, oneway: true},
22: {want: 0xe9, have: 0x3a, distance: 0xa, oneway: true},
23: {want: 0xf0, have: 0x15e, distance: 0xa, oneway: true},
24: {want: 0xf9, have: 0x15e, distance: 0xa, oneway: true},
25: {want: 0x100, have: 0x139, distance: 0xa, oneway: true},
26: {want: 0x130, have: 0x139, distance: 0xa, oneway: true},
27: {want: 0x13c, have: 0x139, distance: 0xa, oneway: true},
28: {want: 0x140, have: 0x151, distance: 0xa, oneway: true},
29: {want: 0x145, have: 0x13e, distance: 0xa, oneway: true},
30: {want: 0x158, have: 0x101, distance: 0xa, oneway: true},
31: {want: 0x16d, have: 0x367, distance: 0xa, oneway: true},
32: {want: 0x16e, have: 0x139, distance: 0xa, oneway: true},
33: {want: 0x16f, have: 0x139, distance: 0xa, oneway: true},
34: {want: 0x17e, have: 0x139, distance: 0xa, oneway: true},
35: {want: 0x190, have: 0x13e, distance: 0xa, oneway: true},
36: {want: 0x194, have: 0x13e, distance: 0xa, oneway: true},
37: {want: 0x1a4, have: 0x1be, distance: 0xa, oneway: true},
38: {want: 0x1b4, have: 0x139, distance: 0xa, oneway: true},
39: {want: 0x1b8, have: 0x139, distance: 0xa, oneway: true},
40: {want: 0x1d4, have: 0x15e, distance: 0xa, oneway: true},
41: {want: 0x1d7, have: 0x3e2, distance: 0xa, oneway: true},
42: {want: 0x1d9, have: 0x139, distance: 0xa, oneway: true},
43: {want: 0x1e7, have: 0x139, distance: 0xa, oneway: true},
44: {want: 0x1f8, have: 0x139, distance: 0xa, oneway: true},
45: {want: 0x20e, have: 0x1e1, distance: 0xa, oneway: true},
46: {want: 0x210, have: 0x139, distance: 0xa, oneway: true},
47: {want: 0x22d, have: 0x15e, distance: 0xa, oneway: true},
48: {want: 0x242, have: 0x3e2, distance: 0xa, oneway: true},
49: {want: 0x24a, have: 0x139, distance: 0xa, oneway: true},
50: {want: 0x251, have: 0x139, distance: 0xa, oneway: true},
51: {want: 0x265, have: 0x139, distance: 0xa, oneway: true},
52: {want: 0x274, have: 0x48a, distance: 0xa, oneway: true},
53: {want: 0x28a, have: 0x3e2, distance: 0xa, oneway: true},
54: {want: 0x28e, have: 0x1f9, distance: 0xa, oneway: true},
55: {want: 0x2a3, have: 0x139, distance: 0xa, oneway: true},
56: {want: 0x2b5, have: 0x15e, distance: 0xa, oneway: true},
57: {want: 0x2b8, have: 0x139, distance: 0xa, oneway: true},
58: {want: 0x2be, have: 0x139, distance: 0xa, oneway: true},
59: {want: 0x2c3, have: 0x15e, distance: 0xa, oneway: true},
60: {want: 0x2ed, have: 0x139, distance: 0xa, oneway: true},
61: {want: 0x2f1, have: 0x15e, distance: 0xa, oneway: true},
62: {want: 0x2fa, have: 0x139, distance: 0xa, oneway: true},
63: {want: 0x2ff, have: 0x7e, distance: 0xa, oneway: true},
64: {want: 0x304, have: 0x139, distance: 0xa, oneway: true},
65: {want: 0x30b, have: 0x3e2, distance: 0xa, oneway: true},
66: {want: 0x31b, have: 0x1be, distance: 0xa, oneway: true},
67: {want: 0x31f, have: 0x1e1, distance: 0xa, oneway: true},
68: {want: 0x320, have: 0x139, distance: 0xa, oneway: true},
69: {want: 0x331, have: 0x139, distance: 0xa, oneway: true},
70: {want: 0x351, have: 0x139, distance: 0xa, oneway: true},
71: {want: 0x36a, have: 0x347, distance: 0xa, oneway: false},
72: {want: 0x36a, have: 0x36f, distance: 0xa, oneway: true},
73: {want: 0x37a, have: 0x139, distance: 0xa, oneway: true},
74: {want: 0x387, have: 0x139, distance: 0xa, oneway: true},
75: {want: 0x389, have: 0x139, distance: 0xa, oneway: true},
76: {want: 0x38b, have: 0x15e, distance: 0xa, oneway: true},
77: {want: 0x390, have: 0x139, distance: 0xa, oneway: true},
78: {want: 0x395, have: 0x139, distance: 0xa, oneway: true},
79: {want: 0x39d, have: 0x139, distance: 0xa, oneway: true},
80: {want: 0x3a5, have: 0x139, distance: 0xa, oneway: true},
81: {want: 0x3be, have: 0x139, distance: 0xa, oneway: true},
82: {want: 0x3c4, have: 0x13e, distance: 0xa, oneway: true},
83: {want: 0x3d4, have: 0x10d, distance: 0xa, oneway: true},
84: {want: 0x3d9, have: 0x139, distance: 0xa, oneway: true},
85: {want: 0x3e5, have: 0x15e, distance: 0xa, oneway: true},
86: {want: 0x3e9, have: 0x1be, distance: 0xa, oneway: true},
87: {want: 0x3fa, have: 0x139, distance: 0xa, oneway: true},
88: {want: 0x40c, have: 0x139, distance: 0xa, oneway: true},
89: {want: 0x423, have: 0x139, distance: 0xa, oneway: true},
90: {want: 0x429, have: 0x139, distance: 0xa, oneway: true},
91: {want: 0x431, have: 0x139, distance: 0xa, oneway: true},
92: {want: 0x43b, have: 0x139, distance: 0xa, oneway: true},
93: {want: 0x43e, have: 0x1e1, distance: 0xa, oneway: true},
94: {want: 0x445, have: 0x139, distance: 0xa, oneway: true},
95: {want: 0x450, have: 0x139, distance: 0xa, oneway: true},
96: {want: 0x461, have: 0x139, distance: 0xa, oneway: true},
97: {want: 0x467, have: 0x3e2, distance: 0xa, oneway: true},
98: {want: 0x46f, have: 0x139, distance: 0xa, oneway: true},
99: {want: 0x476, have: 0x3e2, distance: 0xa, oneway: true},
100: {want: 0x3883, have: 0x139, distance: 0xa, oneway: true},
101: {want: 0x480, have: 0x139, distance: 0xa, oneway: true},
102: {want: 0x482, have: 0x139, distance: 0xa, oneway: true},
103: {want: 0x494, have: 0x3e2, distance: 0xa, oneway: true},
104: {want: 0x49d, have: 0x139, distance: 0xa, oneway: true},
105: {want: 0x4ac, have: 0x529, distance: 0xa, oneway: true},
106: {want: 0x4b4, have: 0x139, distance: 0xa, oneway: true},
107: {want: 0x4bc, have: 0x3e2, distance: 0xa, oneway: true},
108: {want: 0x4e5, have: 0x15e, distance: 0xa, oneway: true},
109: {want: 0x4f2, have: 0x139, distance: 0xa, oneway: true},
110: {want: 0x512, have: 0x139, distance: 0xa, oneway: true},
111: {want: 0x518, have: 0x139, distance: 0xa, oneway: true},
112: {want: 0x52f, have: 0x139, distance: 0xa, oneway: true},
} // Size: 702 bytes
// matchScript holds pairs of scriptIDs where readers of one script
// can typically also read the other. Each is associated with a confidence.
var matchScript = []scriptIntelligibility{ // 26 elements
0: {wantLang: 0x432, haveLang: 0x432, wantScript: 0x5a, haveScript: 0x20, distance: 0x5},
1: {wantLang: 0x432, haveLang: 0x432, wantScript: 0x20, haveScript: 0x5a, distance: 0x5},
2: {wantLang: 0x58, haveLang: 0x3e2, wantScript: 0x5a, haveScript: 0x20, distance: 0xa},
3: {wantLang: 0xa5, haveLang: 0x139, wantScript: 0xe, haveScript: 0x5a, distance: 0xa},
4: {wantLang: 0x1d7, haveLang: 0x3e2, wantScript: 0x8, haveScript: 0x20, distance: 0xa},
5: {wantLang: 0x210, haveLang: 0x139, wantScript: 0x2e, haveScript: 0x5a, distance: 0xa},
6: {wantLang: 0x24a, haveLang: 0x139, wantScript: 0x4e, haveScript: 0x5a, distance: 0xa},
7: {wantLang: 0x251, haveLang: 0x139, wantScript: 0x52, haveScript: 0x5a, distance: 0xa},
8: {wantLang: 0x2b8, haveLang: 0x139, wantScript: 0x57, haveScript: 0x5a, distance: 0xa},
9: {wantLang: 0x304, haveLang: 0x139, wantScript: 0x6e, haveScript: 0x5a, distance: 0xa},
10: {wantLang: 0x331, haveLang: 0x139, wantScript: 0x75, haveScript: 0x5a, distance: 0xa},
11: {wantLang: 0x351, haveLang: 0x139, wantScript: 0x22, haveScript: 0x5a, distance: 0xa},
12: {wantLang: 0x395, haveLang: 0x139, wantScript: 0x81, haveScript: 0x5a, distance: 0xa},
13: {wantLang: 0x39d, haveLang: 0x139, wantScript: 0x36, haveScript: 0x5a, distance: 0xa},
14: {wantLang: 0x3be, haveLang: 0x139, wantScript: 0x5, haveScript: 0x5a, distance: 0xa},
15: {wantLang: 0x3fa, haveLang: 0x139, wantScript: 0x5, haveScript: 0x5a, distance: 0xa},
16: {wantLang: 0x40c, haveLang: 0x139, wantScript: 0xcf, haveScript: 0x5a, distance: 0xa},
17: {wantLang: 0x450, haveLang: 0x139, wantScript: 0xde, haveScript: 0x5a, distance: 0xa},
18: {wantLang: 0x461, haveLang: 0x139, wantScript: 0xe1, haveScript: 0x5a, distance: 0xa},
19: {wantLang: 0x46f, haveLang: 0x139, wantScript: 0x2c, haveScript: 0x5a, distance: 0xa},
20: {wantLang: 0x476, haveLang: 0x3e2, wantScript: 0x5a, haveScript: 0x20, distance: 0xa},
21: {wantLang: 0x4b4, haveLang: 0x139, wantScript: 0x5, haveScript: 0x5a, distance: 0xa},
22: {wantLang: 0x4bc, haveLang: 0x3e2, wantScript: 0x5a, haveScript: 0x20, distance: 0xa},
23: {wantLang: 0x512, haveLang: 0x139, wantScript: 0x3e, haveScript: 0x5a, distance: 0xa},
24: {wantLang: 0x529, haveLang: 0x529, wantScript: 0x3b, haveScript: 0x3c, distance: 0xf},
25: {wantLang: 0x529, haveLang: 0x529, wantScript: 0x3c, haveScript: 0x3b, distance: 0x13},
} // Size: 232 bytes
var matchRegion = []regionIntelligibility{ // 15 elements
0: {lang: 0x3a, script: 0x0, group: 0x4, distance: 0x4},
1: {lang: 0x3a, script: 0x0, group: 0x84, distance: 0x4},
2: {lang: 0x139, script: 0x0, group: 0x1, distance: 0x4},
3: {lang: 0x139, script: 0x0, group: 0x81, distance: 0x4},
4: {lang: 0x13e, script: 0x0, group: 0x3, distance: 0x4},
5: {lang: 0x13e, script: 0x0, group: 0x83, distance: 0x4},
6: {lang: 0x3c0, script: 0x0, group: 0x3, distance: 0x4},
7: {lang: 0x3c0, script: 0x0, group: 0x83, distance: 0x4},
8: {lang: 0x529, script: 0x3c, group: 0x2, distance: 0x4},
9: {lang: 0x529, script: 0x3c, group: 0x82, distance: 0x4},
10: {lang: 0x3a, script: 0x0, group: 0x80, distance: 0x5},
11: {lang: 0x139, script: 0x0, group: 0x80, distance: 0x5},
12: {lang: 0x13e, script: 0x0, group: 0x80, distance: 0x5},
13: {lang: 0x3c0, script: 0x0, group: 0x80, distance: 0x5},
14: {lang: 0x529, script: 0x3c, group: 0x80, distance: 0x5},
} // Size: 114 bytes
// Total table size 1472 bytes (1KiB); checksum: F86C669

@ -0,0 +1,145 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package language
import "golang.org/x/text/internal/language/compact"
// TODO: Various sets of commonly use tags and regions.
// MustParse is like Parse, but panics if the given BCP 47 tag cannot be parsed.
// It simplifies safe initialization of Tag values.
func MustParse(s string) Tag {
t, err := Parse(s)
if err != nil {
panic(err)
}
return t
}
// MustParse is like Parse, but panics if the given BCP 47 tag cannot be parsed.
// It simplifies safe initialization of Tag values.
func (c CanonType) MustParse(s string) Tag {
t, err := c.Parse(s)
if err != nil {
panic(err)
}
return t
}
// MustParseBase is like ParseBase, but panics if the given base cannot be parsed.
// It simplifies safe initialization of Base values.
func MustParseBase(s string) Base {
b, err := ParseBase(s)
if err != nil {
panic(err)
}
return b
}
// MustParseScript is like ParseScript, but panics if the given script cannot be
// parsed. It simplifies safe initialization of Script values.
func MustParseScript(s string) Script {
scr, err := ParseScript(s)
if err != nil {
panic(err)
}
return scr
}
// MustParseRegion is like ParseRegion, but panics if the given region cannot be
// parsed. It simplifies safe initialization of Region values.
func MustParseRegion(s string) Region {
r, err := ParseRegion(s)
if err != nil {
panic(err)
}
return r
}
var (
und = Tag{}
Und Tag = Tag{}
Afrikaans Tag = Tag(compact.Afrikaans)
Amharic Tag = Tag(compact.Amharic)
Arabic Tag = Tag(compact.Arabic)
ModernStandardArabic Tag = Tag(compact.ModernStandardArabic)
Azerbaijani Tag = Tag(compact.Azerbaijani)
Bulgarian Tag = Tag(compact.Bulgarian)
Bengali Tag = Tag(compact.Bengali)
Catalan Tag = Tag(compact.Catalan)
Czech Tag = Tag(compact.Czech)
Danish Tag = Tag(compact.Danish)
German Tag = Tag(compact.German)
Greek Tag = Tag(compact.Greek)
English Tag = Tag(compact.English)
AmericanEnglish Tag = Tag(compact.AmericanEnglish)
BritishEnglish Tag = Tag(compact.BritishEnglish)
Spanish Tag = Tag(compact.Spanish)
EuropeanSpanish Tag = Tag(compact.EuropeanSpanish)
LatinAmericanSpanish Tag = Tag(compact.LatinAmericanSpanish)
Estonian Tag = Tag(compact.Estonian)
Persian Tag = Tag(compact.Persian)
Finnish Tag = Tag(compact.Finnish)
Filipino Tag = Tag(compact.Filipino)
French Tag = Tag(compact.French)
CanadianFrench Tag = Tag(compact.CanadianFrench)
Gujarati Tag = Tag(compact.Gujarati)
Hebrew Tag = Tag(compact.Hebrew)
Hindi Tag = Tag(compact.Hindi)
Croatian Tag = Tag(compact.Croatian)
Hungarian Tag = Tag(compact.Hungarian)
Armenian Tag = Tag(compact.Armenian)
Indonesian Tag = Tag(compact.Indonesian)
Icelandic Tag = Tag(compact.Icelandic)
Italian Tag = Tag(compact.Italian)
Japanese Tag = Tag(compact.Japanese)
Georgian Tag = Tag(compact.Georgian)
Kazakh Tag = Tag(compact.Kazakh)
Khmer Tag = Tag(compact.Khmer)
Kannada Tag = Tag(compact.Kannada)
Korean Tag = Tag(compact.Korean)
Kirghiz Tag = Tag(compact.Kirghiz)
Lao Tag = Tag(compact.Lao)
Lithuanian Tag = Tag(compact.Lithuanian)
Latvian Tag = Tag(compact.Latvian)
Macedonian Tag = Tag(compact.Macedonian)
Malayalam Tag = Tag(compact.Malayalam)
Mongolian Tag = Tag(compact.Mongolian)
Marathi Tag = Tag(compact.Marathi)
Malay Tag = Tag(compact.Malay)
Burmese Tag = Tag(compact.Burmese)
Nepali Tag = Tag(compact.Nepali)
Dutch Tag = Tag(compact.Dutch)
Norwegian Tag = Tag(compact.Norwegian)
Punjabi Tag = Tag(compact.Punjabi)
Polish Tag = Tag(compact.Polish)
Portuguese Tag = Tag(compact.Portuguese)
BrazilianPortuguese Tag = Tag(compact.BrazilianPortuguese)
EuropeanPortuguese Tag = Tag(compact.EuropeanPortuguese)
Romanian Tag = Tag(compact.Romanian)
Russian Tag = Tag(compact.Russian)
Sinhala Tag = Tag(compact.Sinhala)
Slovak Tag = Tag(compact.Slovak)
Slovenian Tag = Tag(compact.Slovenian)
Albanian Tag = Tag(compact.Albanian)
Serbian Tag = Tag(compact.Serbian)
SerbianLatin Tag = Tag(compact.SerbianLatin)
Swedish Tag = Tag(compact.Swedish)
Swahili Tag = Tag(compact.Swahili)
Tamil Tag = Tag(compact.Tamil)
Telugu Tag = Tag(compact.Telugu)
Thai Tag = Tag(compact.Thai)
Turkish Tag = Tag(compact.Turkish)
Ukrainian Tag = Tag(compact.Ukrainian)
Urdu Tag = Tag(compact.Urdu)
Uzbek Tag = Tag(compact.Uzbek)
Vietnamese Tag = Tag(compact.Vietnamese)
Chinese Tag = Tag(compact.Chinese)
SimplifiedChinese Tag = Tag(compact.SimplifiedChinese)
TraditionalChinese Tag = Tag(compact.TraditionalChinese)
Zulu Tag = Tag(compact.Zulu)
)

@ -0,0 +1,187 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runes
import (
"unicode/utf8"
"golang.org/x/text/transform"
)
// Note: below we pass invalid UTF-8 to the tIn and tNotIn transformers as is.
// This is done for various reasons:
// - To retain the semantics of the Nop transformer: if input is passed to a Nop
// one would expect it to be unchanged.
// - It would be very expensive to pass a converted RuneError to a transformer:
// a transformer might need more source bytes after RuneError, meaning that
// the only way to pass it safely is to create a new buffer and manage the
// intermingling of RuneErrors and normal input.
// - Many transformers leave ill-formed UTF-8 as is, so this is not
// inconsistent. Generally ill-formed UTF-8 is only replaced if it is a
// logical consequence of the operation (as for Map) or if it otherwise would
// pose security concerns (as for Remove).
// - An alternative would be to return an error on ill-formed UTF-8, but this
// would be inconsistent with other operations.
// If returns a transformer that applies tIn to consecutive runes for which
// s.Contains(r) and tNotIn to consecutive runes for which !s.Contains(r). Reset
// is called on tIn and tNotIn at the start of each run. A Nop transformer will
// substitute a nil value passed to tIn or tNotIn. Invalid UTF-8 is translated
// to RuneError to determine which transformer to apply, but is passed as is to
// the respective transformer.
func If(s Set, tIn, tNotIn transform.Transformer) Transformer {
if tIn == nil && tNotIn == nil {
return Transformer{transform.Nop}
}
if tIn == nil {
tIn = transform.Nop
}
if tNotIn == nil {
tNotIn = transform.Nop
}
sIn, ok := tIn.(transform.SpanningTransformer)
if !ok {
sIn = dummySpan{tIn}
}
sNotIn, ok := tNotIn.(transform.SpanningTransformer)
if !ok {
sNotIn = dummySpan{tNotIn}
}
a := &cond{
tIn: sIn,
tNotIn: sNotIn,
f: s.Contains,
}
a.Reset()
return Transformer{a}
}
type dummySpan struct{ transform.Transformer }
func (d dummySpan) Span(src []byte, atEOF bool) (n int, err error) {
return 0, transform.ErrEndOfSpan
}
type cond struct {
tIn, tNotIn transform.SpanningTransformer
f func(rune) bool
check func(rune) bool // current check to perform
t transform.SpanningTransformer // current transformer to use
}
// Reset implements transform.Transformer.
func (t *cond) Reset() {
t.check = t.is
t.t = t.tIn
t.t.Reset() // notIn will be reset on first usage.
}
func (t *cond) is(r rune) bool {
if t.f(r) {
return true
}
t.check = t.isNot
t.t = t.tNotIn
t.tNotIn.Reset()
return false
}
func (t *cond) isNot(r rune) bool {
if !t.f(r) {
return true
}
t.check = t.is
t.t = t.tIn
t.tIn.Reset()
return false
}
// This implementation of Span doesn't help all too much, but it needs to be
// there to satisfy this package's Transformer interface.
// TODO: there are certainly room for improvements, though. For example, if
// t.t == transform.Nop (which will a common occurrence) it will save a bundle
// to special-case that loop.
func (t *cond) Span(src []byte, atEOF bool) (n int, err error) {
p := 0
for n < len(src) && err == nil {
// Don't process too much at a time as the Spanner that will be
// called on this block may terminate early.
const maxChunk = 4096
max := len(src)
if v := n + maxChunk; v < max {
max = v
}
atEnd := false
size := 0
current := t.t
for ; p < max; p += size {
r := rune(src[p])
if r < utf8.RuneSelf {
size = 1
} else if r, size = utf8.DecodeRune(src[p:]); size == 1 {
if !atEOF && !utf8.FullRune(src[p:]) {
err = transform.ErrShortSrc
break
}
}
if !t.check(r) {
// The next rune will be the start of a new run.
atEnd = true
break
}
}
n2, err2 := current.Span(src[n:p], atEnd || (atEOF && p == len(src)))
n += n2
if err2 != nil {
return n, err2
}
// At this point either err != nil or t.check will pass for the rune at p.
p = n + size
}
return n, err
}
func (t *cond) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
p := 0
for nSrc < len(src) && err == nil {
// Don't process too much at a time, as the work might be wasted if the
// destination buffer isn't large enough to hold the result or a
// transform returns an error early.
const maxChunk = 4096
max := len(src)
if n := nSrc + maxChunk; n < len(src) {
max = n
}
atEnd := false
size := 0
current := t.t
for ; p < max; p += size {
r := rune(src[p])
if r < utf8.RuneSelf {
size = 1
} else if r, size = utf8.DecodeRune(src[p:]); size == 1 {
if !atEOF && !utf8.FullRune(src[p:]) {
err = transform.ErrShortSrc
break
}
}
if !t.check(r) {
// The next rune will be the start of a new run.
atEnd = true
break
}
}
nDst2, nSrc2, err2 := current.Transform(dst[nDst:], src[nSrc:p], atEnd || (atEOF && p == len(src)))
nDst += nDst2
nSrc += nSrc2
if err2 != nil {
return nDst, nSrc, err2
}
// At this point either err != nil or t.check will pass for the rune at p.
p = nSrc + size
}
return nDst, nSrc, err
}

@ -0,0 +1,355 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package runes provide transforms for UTF-8 encoded text.
package runes // import "golang.org/x/text/runes"
import (
"unicode"
"unicode/utf8"
"golang.org/x/text/transform"
)
// A Set is a collection of runes.
type Set interface {
// Contains returns true if r is contained in the set.
Contains(r rune) bool
}
type setFunc func(rune) bool
func (s setFunc) Contains(r rune) bool {
return s(r)
}
// Note: using funcs here instead of wrapping types result in cleaner
// documentation and a smaller API.
// In creates a Set with a Contains method that returns true for all runes in
// the given RangeTable.
func In(rt *unicode.RangeTable) Set {
return setFunc(func(r rune) bool { return unicode.Is(rt, r) })
}
// In creates a Set with a Contains method that returns true for all runes not
// in the given RangeTable.
func NotIn(rt *unicode.RangeTable) Set {
return setFunc(func(r rune) bool { return !unicode.Is(rt, r) })
}
// Predicate creates a Set with a Contains method that returns f(r).
func Predicate(f func(rune) bool) Set {
return setFunc(f)
}
// Transformer implements the transform.Transformer interface.
type Transformer struct {
t transform.SpanningTransformer
}
func (t Transformer) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
return t.t.Transform(dst, src, atEOF)
}
func (t Transformer) Span(b []byte, atEOF bool) (n int, err error) {
return t.t.Span(b, atEOF)
}
func (t Transformer) Reset() { t.t.Reset() }
// Bytes returns a new byte slice with the result of converting b using t. It
// calls Reset on t. It returns nil if any error was found. This can only happen
// if an error-producing Transformer is passed to If.
func (t Transformer) Bytes(b []byte) []byte {
b, _, err := transform.Bytes(t, b)
if err != nil {
return nil
}
return b
}
// String returns a string with the result of converting s using t. It calls
// Reset on t. It returns the empty string if any error was found. This can only
// happen if an error-producing Transformer is passed to If.
func (t Transformer) String(s string) string {
s, _, err := transform.String(t, s)
if err != nil {
return ""
}
return s
}
// TODO:
// - Copy: copying strings and bytes in whole-rune units.
// - Validation (maybe)
// - Well-formed-ness (maybe)
const runeErrorString = string(utf8.RuneError)
// Remove returns a Transformer that removes runes r for which s.Contains(r).
// Illegal input bytes are replaced by RuneError before being passed to f.
func Remove(s Set) Transformer {
if f, ok := s.(setFunc); ok {
// This little trick cuts the running time of BenchmarkRemove for sets
// created by Predicate roughly in half.
// TODO: special-case RangeTables as well.
return Transformer{remove(f)}
}
return Transformer{remove(s.Contains)}
}
// TODO: remove transform.RemoveFunc.
type remove func(r rune) bool
func (remove) Reset() {}
// Span implements transform.Spanner.
func (t remove) Span(src []byte, atEOF bool) (n int, err error) {
for r, size := rune(0), 0; n < len(src); {
if r = rune(src[n]); r < utf8.RuneSelf {
size = 1
} else if r, size = utf8.DecodeRune(src[n:]); size == 1 {
// Invalid rune.
if !atEOF && !utf8.FullRune(src[n:]) {
err = transform.ErrShortSrc
} else {
err = transform.ErrEndOfSpan
}
break
}
if t(r) {
err = transform.ErrEndOfSpan
break
}
n += size
}
return
}
// Transform implements transform.Transformer.
func (t remove) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
for r, size := rune(0), 0; nSrc < len(src); {
if r = rune(src[nSrc]); r < utf8.RuneSelf {
size = 1
} else if r, size = utf8.DecodeRune(src[nSrc:]); size == 1 {
// Invalid rune.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
// We replace illegal bytes with RuneError. Not doing so might
// otherwise turn a sequence of invalid UTF-8 into valid UTF-8.
// The resulting byte sequence may subsequently contain runes
// for which t(r) is true that were passed unnoticed.
if !t(utf8.RuneError) {
if nDst+3 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = runeErrorString[0]
dst[nDst+1] = runeErrorString[1]
dst[nDst+2] = runeErrorString[2]
nDst += 3
}
nSrc++
continue
}
if t(r) {
nSrc += size
continue
}
if nDst+size > len(dst) {
err = transform.ErrShortDst
break
}
for i := 0; i < size; i++ {
dst[nDst] = src[nSrc]
nDst++
nSrc++
}
}
return
}
// Map returns a Transformer that maps the runes in the input using the given
// mapping. Illegal bytes in the input are converted to utf8.RuneError before
// being passed to the mapping func.
func Map(mapping func(rune) rune) Transformer {
return Transformer{mapper(mapping)}
}
type mapper func(rune) rune
func (mapper) Reset() {}
// Span implements transform.Spanner.
func (t mapper) Span(src []byte, atEOF bool) (n int, err error) {
for r, size := rune(0), 0; n < len(src); n += size {
if r = rune(src[n]); r < utf8.RuneSelf {
size = 1
} else if r, size = utf8.DecodeRune(src[n:]); size == 1 {
// Invalid rune.
if !atEOF && !utf8.FullRune(src[n:]) {
err = transform.ErrShortSrc
} else {
err = transform.ErrEndOfSpan
}
break
}
if t(r) != r {
err = transform.ErrEndOfSpan
break
}
}
return n, err
}
// Transform implements transform.Transformer.
func (t mapper) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
var replacement rune
var b [utf8.UTFMax]byte
for r, size := rune(0), 0; nSrc < len(src); {
if r = rune(src[nSrc]); r < utf8.RuneSelf {
if replacement = t(r); replacement < utf8.RuneSelf {
if nDst == len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = byte(replacement)
nDst++
nSrc++
continue
}
size = 1
} else if r, size = utf8.DecodeRune(src[nSrc:]); size == 1 {
// Invalid rune.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
if replacement = t(utf8.RuneError); replacement == utf8.RuneError {
if nDst+3 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = runeErrorString[0]
dst[nDst+1] = runeErrorString[1]
dst[nDst+2] = runeErrorString[2]
nDst += 3
nSrc++
continue
}
} else if replacement = t(r); replacement == r {
if nDst+size > len(dst) {
err = transform.ErrShortDst
break
}
for i := 0; i < size; i++ {
dst[nDst] = src[nSrc]
nDst++
nSrc++
}
continue
}
n := utf8.EncodeRune(b[:], replacement)
if nDst+n > len(dst) {
err = transform.ErrShortDst
break
}
for i := 0; i < n; i++ {
dst[nDst] = b[i]
nDst++
}
nSrc += size
}
return
}
// ReplaceIllFormed returns a transformer that replaces all input bytes that are
// not part of a well-formed UTF-8 code sequence with utf8.RuneError.
func ReplaceIllFormed() Transformer {
return Transformer{&replaceIllFormed{}}
}
type replaceIllFormed struct{ transform.NopResetter }
func (t replaceIllFormed) Span(src []byte, atEOF bool) (n int, err error) {
for n < len(src) {
// ASCII fast path.
if src[n] < utf8.RuneSelf {
n++
continue
}
r, size := utf8.DecodeRune(src[n:])
// Look for a valid non-ASCII rune.
if r != utf8.RuneError || size != 1 {
n += size
continue
}
// Look for short source data.
if !atEOF && !utf8.FullRune(src[n:]) {
err = transform.ErrShortSrc
break
}
// We have an invalid rune.
err = transform.ErrEndOfSpan
break
}
return n, err
}
func (t replaceIllFormed) Transform(dst, src []byte, atEOF bool) (nDst, nSrc int, err error) {
for nSrc < len(src) {
// ASCII fast path.
if r := src[nSrc]; r < utf8.RuneSelf {
if nDst == len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst] = r
nDst++
nSrc++
continue
}
// Look for a valid non-ASCII rune.
if _, size := utf8.DecodeRune(src[nSrc:]); size != 1 {
if size != copy(dst[nDst:], src[nSrc:nSrc+size]) {
err = transform.ErrShortDst
break
}
nDst += size
nSrc += size
continue
}
// Look for short source data.
if !atEOF && !utf8.FullRune(src[nSrc:]) {
err = transform.ErrShortSrc
break
}
// We have an invalid rune.
if nDst+3 > len(dst) {
err = transform.ErrShortDst
break
}
dst[nDst+0] = runeErrorString[0]
dst[nDst+1] = runeErrorString[1]
dst[nDst+2] = runeErrorString[2]
nDst += 3
nSrc++
}
return nDst, nSrc, err
}

29
vendor/modules.txt vendored

@ -1,3 +1,11 @@
# github.com/basgys/goxml2json v1.1.0
## explicit
github.com/basgys/goxml2json
# github.com/beevik/etree v1.1.0
## explicit
github.com/beevik/etree
# github.com/bitly/go-simplejson v0.5.0
## explicit
# github.com/dtapps/gotime v1.0.1
## explicit; go 1.18
github.com/dtapps/gotime
@ -72,10 +80,31 @@ go.mongodb.org/mongo-driver/x/mongo/driver/wiremessage
golang.org/x/crypto/ocsp
golang.org/x/crypto/pbkdf2
golang.org/x/crypto/scrypt
# golang.org/x/net v0.0.0-20220425223048-2871e0cb64e4
## explicit; go 1.17
golang.org/x/net/html
golang.org/x/net/html/atom
golang.org/x/net/html/charset
# golang.org/x/sync v0.0.0-20210220032951-036812b2e83c
## explicit
golang.org/x/sync/errgroup
# golang.org/x/text v0.3.7
## explicit; go 1.17
golang.org/x/text/encoding
golang.org/x/text/encoding/charmap
golang.org/x/text/encoding/htmlindex
golang.org/x/text/encoding/internal
golang.org/x/text/encoding/internal/identifier
golang.org/x/text/encoding/japanese
golang.org/x/text/encoding/korean
golang.org/x/text/encoding/simplifiedchinese
golang.org/x/text/encoding/traditionalchinese
golang.org/x/text/encoding/unicode
golang.org/x/text/internal/language
golang.org/x/text/internal/language/compact
golang.org/x/text/internal/tag
golang.org/x/text/internal/utf8internal
golang.org/x/text/language
golang.org/x/text/runes
golang.org/x/text/transform
golang.org/x/text/unicode/norm

Loading…
Cancel
Save