package compiler import ( "bytes" "fmt" "go/ast" "go/constant" "go/token" "go/types" "sort" "strconv" "strings" "github.com/gopherjs/gopherjs/compiler/analysis" "github.com/gopherjs/gopherjs/compiler/astutil" "github.com/gopherjs/gopherjs/compiler/typesutil" ) type expression struct { str string parens bool } func (e *expression) String() string { return e.str } func (e *expression) StringWithParens() string { if e.parens { return "(" + e.str + ")" } return e.str } func (c *funcContext) translateExpr(expr ast.Expr) *expression { exprType := c.p.TypeOf(expr) if value := c.p.Types[expr].Value; value != nil { basic := exprType.Underlying().(*types.Basic) switch { case isBoolean(basic): return c.formatExpr("%s", strconv.FormatBool(constant.BoolVal(value))) case isInteger(basic): if is64Bit(basic) { if basic.Kind() == types.Int64 { d, ok := constant.Int64Val(constant.ToInt(value)) if !ok { panic("could not get exact uint") } return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatInt(d>>32, 10), strconv.FormatUint(uint64(d)&(1<<32-1), 10)) } d, ok := constant.Uint64Val(constant.ToInt(value)) if !ok { panic("could not get exact uint") } return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatUint(d>>32, 10), strconv.FormatUint(d&(1<<32-1), 10)) } d, ok := constant.Int64Val(constant.ToInt(value)) if !ok { panic("could not get exact int") } return c.formatExpr("%s", strconv.FormatInt(d, 10)) case isFloat(basic): f, _ := constant.Float64Val(value) return c.formatExpr("%s", strconv.FormatFloat(f, 'g', -1, 64)) case isComplex(basic): r, _ := constant.Float64Val(constant.Real(value)) i, _ := constant.Float64Val(constant.Imag(value)) if basic.Kind() == types.UntypedComplex { exprType = types.Typ[types.Complex128] } return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatFloat(r, 'g', -1, 64), strconv.FormatFloat(i, 'g', -1, 64)) case isString(basic): return c.formatExpr("%s", encodeString(constant.StringVal(value))) default: panic("Unhandled constant type: " + basic.String()) } } var obj types.Object switch e := expr.(type) { case *ast.SelectorExpr: obj = c.p.Uses[e.Sel] case *ast.Ident: obj = c.p.Defs[e] if obj == nil { obj = c.p.Uses[e] } } if obj != nil && typesutil.IsJsPackage(obj.Pkg()) { switch obj.Name() { case "Global": return c.formatExpr("$global") case "Module": return c.formatExpr("$module") case "Undefined": return c.formatExpr("undefined") } } switch e := expr.(type) { case *ast.CompositeLit: if ptrType, isPointer := exprType.(*types.Pointer); isPointer { exprType = ptrType.Elem() } collectIndexedElements := func(elementType types.Type) []string { var elements []string i := 0 zero := c.translateExpr(c.zeroValue(elementType)).String() for _, element := range e.Elts { if kve, isKve := element.(*ast.KeyValueExpr); isKve { key, ok := constant.Int64Val(constant.ToInt(c.p.Types[kve.Key].Value)) if !ok { panic("could not get exact int") } i = int(key) element = kve.Value } for len(elements) <= i { elements = append(elements, zero) } elements[i] = c.translateImplicitConversionWithCloning(element, elementType).String() i++ } return elements } switch t := exprType.Underlying().(type) { case *types.Array: elements := collectIndexedElements(t.Elem()) if len(elements) == 0 { return c.formatExpr("%s.zero()", c.typeName(t)) } zero := c.translateExpr(c.zeroValue(t.Elem())).String() for len(elements) < int(t.Len()) { elements = append(elements, zero) } return c.formatExpr(`$toNativeArray(%s, [%s])`, typeKind(t.Elem()), strings.Join(elements, ", ")) case *types.Slice: return c.formatExpr("new %s([%s])", c.typeName(exprType), strings.Join(collectIndexedElements(t.Elem()), ", ")) case *types.Map: entries := make([]string, len(e.Elts)) for i, element := range e.Elts { kve := element.(*ast.KeyValueExpr) entries[i] = fmt.Sprintf("{ k: %s, v: %s }", c.translateImplicitConversionWithCloning(kve.Key, t.Key()), c.translateImplicitConversionWithCloning(kve.Value, t.Elem())) } return c.formatExpr("$makeMap(%s.keyFor, [%s])", c.typeName(t.Key()), strings.Join(entries, ", ")) case *types.Struct: elements := make([]string, t.NumFields()) isKeyValue := true if len(e.Elts) != 0 { _, isKeyValue = e.Elts[0].(*ast.KeyValueExpr) } if !isKeyValue { for i, element := range e.Elts { elements[i] = c.translateImplicitConversionWithCloning(element, t.Field(i).Type()).String() } } if isKeyValue { for i := range elements { elements[i] = c.translateExpr(c.zeroValue(t.Field(i).Type())).String() } for _, element := range e.Elts { kve := element.(*ast.KeyValueExpr) for j := range elements { if kve.Key.(*ast.Ident).Name == t.Field(j).Name() { elements[j] = c.translateImplicitConversionWithCloning(kve.Value, t.Field(j).Type()).String() break } } } } return c.formatExpr("new %s.ptr(%s)", c.typeName(exprType), strings.Join(elements, ", ")) default: panic(fmt.Sprintf("Unhandled CompositeLit type: %T\n", t)) } case *ast.FuncLit: _, fun := translateFunction(e.Type, nil, e.Body, c, exprType.(*types.Signature), c.p.FuncLitInfos[e], "") if len(c.p.escapingVars) != 0 { names := make([]string, 0, len(c.p.escapingVars)) for obj := range c.p.escapingVars { names = append(names, c.p.objectNames[obj]) } sort.Strings(names) list := strings.Join(names, ", ") return c.formatExpr("(function(%s) { return %s; })(%s)", list, fun, list) } return c.formatExpr("(%s)", fun) case *ast.UnaryExpr: t := c.p.TypeOf(e.X) switch e.Op { case token.AND: if typesutil.IsJsObject(exprType) { return c.formatExpr("%e.object", e.X) } switch t.Underlying().(type) { case *types.Struct, *types.Array: return c.translateExpr(e.X) } switch x := astutil.RemoveParens(e.X).(type) { case *ast.CompositeLit: return c.formatExpr("$newDataPointer(%e, %s)", x, c.typeName(c.p.TypeOf(e))) case *ast.Ident: obj := c.p.Uses[x].(*types.Var) if c.p.escapingVars[obj] { return c.formatExpr("(%1s.$ptr || (%1s.$ptr = new %2s(function() { return this.$target[0]; }, function($v) { this.$target[0] = $v; }, %1s)))", c.p.objectNames[obj], c.typeName(exprType)) } return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false)) case *ast.SelectorExpr: sel, ok := c.p.SelectionOf(x) if !ok { // qualified identifier obj := c.p.Uses[x.Sel].(*types.Var) return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false)) } newSel := &ast.SelectorExpr{X: c.newIdent("this.$target", c.p.TypeOf(x.X)), Sel: x.Sel} c.setType(newSel, exprType) c.p.additionalSelections[newSel] = sel return c.formatExpr("(%1e.$ptr_%2s || (%1e.$ptr_%2s = new %3s(function() { return %4e; }, function($v) { %5s }, %1e)))", x.X, x.Sel.Name, c.typeName(exprType), newSel, c.translateAssign(newSel, c.newIdent("$v", exprType), false)) case *ast.IndexExpr: if _, ok := c.p.TypeOf(x.X).Underlying().(*types.Slice); ok { return c.formatExpr("$indexPtr(%1e.$array, %1e.$offset + %2e, %3s)", x.X, x.Index, c.typeName(exprType)) } return c.formatExpr("$indexPtr(%e, %e, %s)", x.X, x.Index, c.typeName(exprType)) case *ast.StarExpr: return c.translateExpr(x.X) default: panic(fmt.Sprintf("Unhandled: %T\n", x)) } case token.ARROW: call := &ast.CallExpr{ Fun: c.newIdent("$recv", types.NewSignature(nil, types.NewTuple(types.NewVar(0, nil, "", t)), types.NewTuple(types.NewVar(0, nil, "", exprType), types.NewVar(0, nil, "", types.Typ[types.Bool])), false)), Args: []ast.Expr{e.X}, } c.Blocking[call] = true if _, isTuple := exprType.(*types.Tuple); isTuple { return c.formatExpr("%e", call) } return c.formatExpr("%e[0]", call) } basic := t.Underlying().(*types.Basic) switch e.Op { case token.ADD: return c.translateExpr(e.X) case token.SUB: switch { case is64Bit(basic): return c.formatExpr("new %1s(-%2h, -%2l)", c.typeName(t), e.X) case isComplex(basic): return c.formatExpr("new %1s(-%2r, -%2i)", c.typeName(t), e.X) case isUnsigned(basic): return c.fixNumber(c.formatExpr("-%e", e.X), basic) default: return c.formatExpr("-%e", e.X) } case token.XOR: if is64Bit(basic) { return c.formatExpr("new %1s(~%2h, ~%2l >>> 0)", c.typeName(t), e.X) } return c.fixNumber(c.formatExpr("~%e", e.X), basic) case token.NOT: return c.formatExpr("!%e", e.X) default: panic(e.Op) } case *ast.BinaryExpr: if e.Op == token.NEQ { return c.formatExpr("!(%s)", c.translateExpr(&ast.BinaryExpr{ X: e.X, Op: token.EQL, Y: e.Y, })) } t := c.p.TypeOf(e.X) t2 := c.p.TypeOf(e.Y) _, isInterface := t2.Underlying().(*types.Interface) if isInterface || types.Identical(t, types.Typ[types.UntypedNil]) { t = t2 } if basic, isBasic := t.Underlying().(*types.Basic); isBasic && isNumeric(basic) { if is64Bit(basic) { switch e.Op { case token.MUL: return c.formatExpr("$mul64(%e, %e)", e.X, e.Y) case token.QUO: return c.formatExpr("$div64(%e, %e, false)", e.X, e.Y) case token.REM: return c.formatExpr("$div64(%e, %e, true)", e.X, e.Y) case token.SHL: return c.formatExpr("$shiftLeft64(%e, %f)", e.X, e.Y) case token.SHR: return c.formatExpr("$shiftRight%s(%e, %f)", toJavaScriptType(basic), e.X, e.Y) case token.EQL: return c.formatExpr("(%1h === %2h && %1l === %2l)", e.X, e.Y) case token.LSS: return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l < %2l))", e.X, e.Y) case token.LEQ: return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l <= %2l))", e.X, e.Y) case token.GTR: return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l > %2l))", e.X, e.Y) case token.GEQ: return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l >= %2l))", e.X, e.Y) case token.ADD, token.SUB: return c.formatExpr("new %3s(%1h %4t %2h, %1l %4t %2l)", e.X, e.Y, c.typeName(t), e.Op) case token.AND, token.OR, token.XOR: return c.formatExpr("new %3s(%1h %4t %2h, (%1l %4t %2l) >>> 0)", e.X, e.Y, c.typeName(t), e.Op) case token.AND_NOT: return c.formatExpr("new %3s(%1h & ~%2h, (%1l & ~%2l) >>> 0)", e.X, e.Y, c.typeName(t)) default: panic(e.Op) } } if isComplex(basic) { switch e.Op { case token.EQL: return c.formatExpr("(%1r === %2r && %1i === %2i)", e.X, e.Y) case token.ADD, token.SUB: return c.formatExpr("new %3s(%1r %4t %2r, %1i %4t %2i)", e.X, e.Y, c.typeName(t), e.Op) case token.MUL: return c.formatExpr("new %3s(%1r * %2r - %1i * %2i, %1r * %2i + %1i * %2r)", e.X, e.Y, c.typeName(t)) case token.QUO: return c.formatExpr("$divComplex(%e, %e)", e.X, e.Y) default: panic(e.Op) } } switch e.Op { case token.EQL: return c.formatParenExpr("%e === %e", e.X, e.Y) case token.LSS, token.LEQ, token.GTR, token.GEQ: return c.formatExpr("%e %t %e", e.X, e.Op, e.Y) case token.ADD, token.SUB: return c.fixNumber(c.formatExpr("%e %t %e", e.X, e.Op, e.Y), basic) case token.MUL: switch basic.Kind() { case types.Int32, types.Int: return c.formatParenExpr("$imul(%e, %e)", e.X, e.Y) case types.Uint32, types.Uintptr: return c.formatParenExpr("$imul(%e, %e) >>> 0", e.X, e.Y) } return c.fixNumber(c.formatExpr("%e * %e", e.X, e.Y), basic) case token.QUO: if isInteger(basic) { // cut off decimals shift := ">>" if isUnsigned(basic) { shift = ">>>" } return c.formatExpr(`(%1s = %2e / %3e, (%1s === %1s && %1s !== 1/0 && %1s !== -1/0) ? %1s %4s 0 : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_q"), e.X, e.Y, shift) } if basic.Kind() == types.Float32 { return c.fixNumber(c.formatExpr("%e / %e", e.X, e.Y), basic) } return c.formatExpr("%e / %e", e.X, e.Y) case token.REM: return c.formatExpr(`(%1s = %2e %% %3e, %1s === %1s ? %1s : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_r"), e.X, e.Y) case token.SHL, token.SHR: op := e.Op.String() if e.Op == token.SHR && isUnsigned(basic) { op = ">>>" } if v := c.p.Types[e.Y].Value; v != nil { i, _ := constant.Uint64Val(constant.ToInt(v)) if i >= 32 { return c.formatExpr("0") } return c.fixNumber(c.formatExpr("%e %s %s", e.X, op, strconv.FormatUint(i, 10)), basic) } if e.Op == token.SHR && !isUnsigned(basic) { return c.fixNumber(c.formatParenExpr("%e >> $min(%f, 31)", e.X, e.Y), basic) } y := c.newVariable("y") return c.fixNumber(c.formatExpr("(%s = %f, %s < 32 ? (%e %s %s) : 0)", y, e.Y, y, e.X, op, y), basic) case token.AND, token.OR: if isUnsigned(basic) { return c.formatParenExpr("(%e %t %e) >>> 0", e.X, e.Op, e.Y) } return c.formatParenExpr("%e %t %e", e.X, e.Op, e.Y) case token.AND_NOT: return c.fixNumber(c.formatParenExpr("%e & ~%e", e.X, e.Y), basic) case token.XOR: return c.fixNumber(c.formatParenExpr("%e ^ %e", e.X, e.Y), basic) default: panic(e.Op) } } switch e.Op { case token.ADD, token.LSS, token.LEQ, token.GTR, token.GEQ: return c.formatExpr("%e %t %e", e.X, e.Op, e.Y) case token.LAND: if c.Blocking[e.Y] { skipCase := c.caseCounter c.caseCounter++ resultVar := c.newVariable("_v") c.Printf("if (!(%s)) { %s = false; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase) c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase) return c.formatExpr("%s", resultVar) } return c.formatExpr("%e && %e", e.X, e.Y) case token.LOR: if c.Blocking[e.Y] { skipCase := c.caseCounter c.caseCounter++ resultVar := c.newVariable("_v") c.Printf("if (%s) { %s = true; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase) c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase) return c.formatExpr("%s", resultVar) } return c.formatExpr("%e || %e", e.X, e.Y) case token.EQL: switch u := t.Underlying().(type) { case *types.Array, *types.Struct: return c.formatExpr("$equal(%e, %e, %s)", e.X, e.Y, c.typeName(t)) case *types.Interface: return c.formatExpr("$interfaceIsEqual(%s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t)) case *types.Pointer: if _, ok := u.Elem().Underlying().(*types.Array); ok { return c.formatExpr("$equal(%s, %s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t), c.typeName(u.Elem())) } case *types.Basic: if isBoolean(u) { if b, ok := analysis.BoolValue(e.X, c.p.Info.Info); ok && b { return c.translateExpr(e.Y) } if b, ok := analysis.BoolValue(e.Y, c.p.Info.Info); ok && b { return c.translateExpr(e.X) } } } return c.formatExpr("%s === %s", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t)) default: panic(e.Op) } case *ast.ParenExpr: return c.formatParenExpr("%e", e.X) case *ast.IndexExpr: switch t := c.p.TypeOf(e.X).Underlying().(type) { case *types.Array, *types.Pointer: pattern := rangeCheck("%1e[%2f]", c.p.Types[e.Index].Value != nil, true) if _, ok := t.(*types.Pointer); ok { // check pointer for nix (attribute getter causes a panic) pattern = `(%1e.nilCheck, ` + pattern + `)` } return c.formatExpr(pattern, e.X, e.Index) case *types.Slice: return c.formatExpr(rangeCheck("%1e.$array[%1e.$offset + %2f]", c.p.Types[e.Index].Value != nil, false), e.X, e.Index) case *types.Map: if typesutil.IsJsObject(c.p.TypeOf(e.Index)) { c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: e.Index.Pos(), Msg: "cannot use js.Object as map key"}) } key := fmt.Sprintf("%s.keyFor(%s)", c.typeName(t.Key()), c.translateImplicitConversion(e.Index, t.Key())) if _, isTuple := exprType.(*types.Tuple); isTuple { return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? [%1s.v, true] : [%4e, false])`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem())) } return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? %1s.v : %4e)`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem())) case *types.Basic: return c.formatExpr("%e.charCodeAt(%f)", e.X, e.Index) default: panic(fmt.Sprintf("Unhandled IndexExpr: %T\n", t)) } case *ast.SliceExpr: if b, isBasic := c.p.TypeOf(e.X).Underlying().(*types.Basic); isBasic && isString(b) { switch { case e.Low == nil && e.High == nil: return c.translateExpr(e.X) case e.Low == nil: return c.formatExpr("$substring(%e, 0, %f)", e.X, e.High) case e.High == nil: return c.formatExpr("$substring(%e, %f)", e.X, e.Low) default: return c.formatExpr("$substring(%e, %f, %f)", e.X, e.Low, e.High) } } slice := c.translateConversionToSlice(e.X, exprType) switch { case e.Low == nil && e.High == nil: return c.formatExpr("%s", slice) case e.Low == nil: if e.Max != nil { return c.formatExpr("$subslice(%s, 0, %f, %f)", slice, e.High, e.Max) } return c.formatExpr("$subslice(%s, 0, %f)", slice, e.High) case e.High == nil: return c.formatExpr("$subslice(%s, %f)", slice, e.Low) default: if e.Max != nil { return c.formatExpr("$subslice(%s, %f, %f, %f)", slice, e.Low, e.High, e.Max) } return c.formatExpr("$subslice(%s, %f, %f)", slice, e.Low, e.High) } case *ast.SelectorExpr: sel, ok := c.p.SelectionOf(e) if !ok { // qualified identifier return c.formatExpr("%s", c.objectName(obj)) } switch sel.Kind() { case types.FieldVal: fields, jsTag := c.translateSelection(sel, e.Pos()) if jsTag != "" { if _, ok := sel.Type().(*types.Signature); ok { return c.formatExpr("$internalize(%1e.%2s.%3s, %4s, %1e.%2s)", e.X, strings.Join(fields, "."), jsTag, c.typeName(sel.Type())) } return c.internalize(c.formatExpr("%e.%s.%s", e.X, strings.Join(fields, "."), jsTag), sel.Type()) } return c.formatExpr("%e.%s", e.X, strings.Join(fields, ".")) case types.MethodVal: return c.formatExpr(`$methodVal(%s, "%s")`, c.makeReceiver(e), sel.Obj().(*types.Func).Name()) case types.MethodExpr: if !sel.Obj().Exported() { c.p.dependencies[sel.Obj()] = true } if _, ok := sel.Recv().Underlying().(*types.Interface); ok { return c.formatExpr(`$ifaceMethodExpr("%s")`, sel.Obj().(*types.Func).Name()) } return c.formatExpr(`$methodExpr(%s, "%s")`, c.typeName(sel.Recv()), sel.Obj().(*types.Func).Name()) default: panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind())) } case *ast.CallExpr: plainFun := astutil.RemoveParens(e.Fun) if astutil.IsTypeExpr(plainFun, c.p.Info.Info) { return c.formatExpr("(%s)", c.translateConversion(e.Args[0], c.p.TypeOf(plainFun))) } sig := c.p.TypeOf(plainFun).Underlying().(*types.Signature) switch f := plainFun.(type) { case *ast.Ident: obj := c.p.Uses[f] if o, ok := obj.(*types.Builtin); ok { return c.translateBuiltin(o.Name(), sig, e.Args, e.Ellipsis.IsValid()) } if typesutil.IsJsPackage(obj.Pkg()) && obj.Name() == "InternalObject" { return c.translateExpr(e.Args[0]) } return c.translateCall(e, sig, c.translateExpr(f)) case *ast.SelectorExpr: sel, ok := c.p.SelectionOf(f) if !ok { // qualified identifier obj := c.p.Uses[f.Sel] if typesutil.IsJsPackage(obj.Pkg()) { switch obj.Name() { case "Debugger": return c.formatExpr("debugger") case "InternalObject": return c.translateExpr(e.Args[0]) } } return c.translateCall(e, sig, c.translateExpr(f)) } externalizeExpr := func(e ast.Expr) string { t := c.p.TypeOf(e) if types.Identical(t, types.Typ[types.UntypedNil]) { return "null" } return c.externalize(c.translateExpr(e).String(), t) } externalizeArgs := func(args []ast.Expr) string { s := make([]string, len(args)) for i, arg := range args { s[i] = externalizeExpr(arg) } return strings.Join(s, ", ") } switch sel.Kind() { case types.MethodVal: recv := c.makeReceiver(f) declaredFuncRecv := sel.Obj().(*types.Func).Type().(*types.Signature).Recv().Type() if typesutil.IsJsObject(declaredFuncRecv) { globalRef := func(id string) string { if recv.String() == "$global" && id[0] == '$' && len(id) > 1 { return id } return recv.String() + "." + id } switch sel.Obj().Name() { case "Get": if id, ok := c.identifierConstant(e.Args[0]); ok { return c.formatExpr("%s", globalRef(id)) } return c.formatExpr("%s[$externalize(%e, $String)]", recv, e.Args[0]) case "Set": if id, ok := c.identifierConstant(e.Args[0]); ok { return c.formatExpr("%s = %s", globalRef(id), externalizeExpr(e.Args[1])) } return c.formatExpr("%s[$externalize(%e, $String)] = %s", recv, e.Args[0], externalizeExpr(e.Args[1])) case "Delete": return c.formatExpr("delete %s[$externalize(%e, $String)]", recv, e.Args[0]) case "Length": return c.formatExpr("$parseInt(%s.length)", recv) case "Index": return c.formatExpr("%s[%e]", recv, e.Args[0]) case "SetIndex": return c.formatExpr("%s[%e] = %s", recv, e.Args[0], externalizeExpr(e.Args[1])) case "Call": if id, ok := c.identifierConstant(e.Args[0]); ok { if e.Ellipsis.IsValid() { objVar := c.newVariable("obj") return c.formatExpr("(%s = %s, %s.%s.apply(%s, %s))", objVar, recv, objVar, id, objVar, externalizeExpr(e.Args[1])) } return c.formatExpr("%s(%s)", globalRef(id), externalizeArgs(e.Args[1:])) } if e.Ellipsis.IsValid() { objVar := c.newVariable("obj") return c.formatExpr("(%s = %s, %s[$externalize(%e, $String)].apply(%s, %s))", objVar, recv, objVar, e.Args[0], objVar, externalizeExpr(e.Args[1])) } return c.formatExpr("%s[$externalize(%e, $String)](%s)", recv, e.Args[0], externalizeArgs(e.Args[1:])) case "Invoke": if e.Ellipsis.IsValid() { return c.formatExpr("%s.apply(undefined, %s)", recv, externalizeExpr(e.Args[0])) } return c.formatExpr("%s(%s)", recv, externalizeArgs(e.Args)) case "New": if e.Ellipsis.IsValid() { return c.formatExpr("new ($global.Function.prototype.bind.apply(%s, [undefined].concat(%s)))", recv, externalizeExpr(e.Args[0])) } return c.formatExpr("new (%s)(%s)", recv, externalizeArgs(e.Args)) case "Bool": return c.internalize(recv, types.Typ[types.Bool]) case "String": return c.internalize(recv, types.Typ[types.String]) case "Int": return c.internalize(recv, types.Typ[types.Int]) case "Int64": return c.internalize(recv, types.Typ[types.Int64]) case "Uint64": return c.internalize(recv, types.Typ[types.Uint64]) case "Float": return c.internalize(recv, types.Typ[types.Float64]) case "Interface": return c.internalize(recv, types.NewInterface(nil, nil)) case "Unsafe": return recv default: panic("Invalid js package object: " + sel.Obj().Name()) } } methodName := sel.Obj().Name() if reservedKeywords[methodName] { methodName += "$" } return c.translateCall(e, sig, c.formatExpr("%s.%s", recv, methodName)) case types.FieldVal: fields, jsTag := c.translateSelection(sel, f.Pos()) if jsTag != "" { call := c.formatExpr("%e.%s.%s(%s)", f.X, strings.Join(fields, "."), jsTag, externalizeArgs(e.Args)) switch sig.Results().Len() { case 0: return call case 1: return c.internalize(call, sig.Results().At(0).Type()) default: c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: f.Pos(), Msg: "field with js tag can not have func type with multiple results"}) } } return c.translateCall(e, sig, c.formatExpr("%e.%s", f.X, strings.Join(fields, "."))) case types.MethodExpr: return c.translateCall(e, sig, c.translateExpr(f)) default: panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind())) } default: return c.translateCall(e, sig, c.translateExpr(plainFun)) } case *ast.StarExpr: if typesutil.IsJsObject(c.p.TypeOf(e.X)) { return c.formatExpr("new $jsObjectPtr(%e)", e.X) } if c1, isCall := e.X.(*ast.CallExpr); isCall && len(c1.Args) == 1 { if c2, isCall := c1.Args[0].(*ast.CallExpr); isCall && len(c2.Args) == 1 && types.Identical(c.p.TypeOf(c2.Fun), types.Typ[types.UnsafePointer]) { if unary, isUnary := c2.Args[0].(*ast.UnaryExpr); isUnary && unary.Op == token.AND { return c.translateExpr(unary.X) // unsafe conversion } } } switch exprType.Underlying().(type) { case *types.Struct, *types.Array: return c.translateExpr(e.X) } return c.formatExpr("%e.$get()", e.X) case *ast.TypeAssertExpr: if e.Type == nil { return c.translateExpr(e.X) } t := c.p.TypeOf(e.Type) if _, isTuple := exprType.(*types.Tuple); isTuple { return c.formatExpr("$assertType(%e, %s, true)", e.X, c.typeName(t)) } return c.formatExpr("$assertType(%e, %s)", e.X, c.typeName(t)) case *ast.Ident: if e.Name == "_" { panic("Tried to translate underscore identifier.") } switch o := obj.(type) { case *types.Var, *types.Const: return c.formatExpr("%s", c.objectName(o)) case *types.Func: return c.formatExpr("%s", c.objectName(o)) case *types.TypeName: return c.formatExpr("%s", c.typeName(o.Type())) case *types.Nil: if typesutil.IsJsObject(exprType) { return c.formatExpr("null") } switch t := exprType.Underlying().(type) { case *types.Basic: if t.Kind() != types.UnsafePointer { panic("unexpected basic type") } return c.formatExpr("0") case *types.Slice, *types.Pointer: return c.formatExpr("%s.nil", c.typeName(exprType)) case *types.Chan: return c.formatExpr("$chanNil") case *types.Map: return c.formatExpr("false") case *types.Interface: return c.formatExpr("$ifaceNil") case *types.Signature: return c.formatExpr("$throwNilPointerError") default: panic(fmt.Sprintf("unexpected type: %T", t)) } default: panic(fmt.Sprintf("Unhandled object: %T\n", o)) } case nil: return c.formatExpr("") default: panic(fmt.Sprintf("Unhandled expression: %T\n", e)) } } func (c *funcContext) translateCall(e *ast.CallExpr, sig *types.Signature, fun *expression) *expression { args := c.translateArgs(sig, e.Args, e.Ellipsis.IsValid()) if c.Blocking[e] { resumeCase := c.caseCounter c.caseCounter++ returnVar := "$r" if sig.Results().Len() != 0 { returnVar = c.newVariable("_r") } c.Printf("%[1]s = %[2]s(%[3]s); /* */ $s = %[4]d; case %[4]d: if($c) { $c = false; %[1]s = %[1]s.$blk(); } if (%[1]s && %[1]s.$blk !== undefined) { break s; }", returnVar, fun, strings.Join(args, ", "), resumeCase) if sig.Results().Len() != 0 { return c.formatExpr("%s", returnVar) } return c.formatExpr("") } return c.formatExpr("%s(%s)", fun, strings.Join(args, ", ")) } func (c *funcContext) makeReceiver(e *ast.SelectorExpr) *expression { sel, _ := c.p.SelectionOf(e) if !sel.Obj().Exported() { c.p.dependencies[sel.Obj()] = true } x := e.X recvType := sel.Recv() if len(sel.Index()) > 1 { for _, index := range sel.Index()[:len(sel.Index())-1] { if ptr, isPtr := recvType.(*types.Pointer); isPtr { recvType = ptr.Elem() } s := recvType.Underlying().(*types.Struct) recvType = s.Field(index).Type() } fakeSel := &ast.SelectorExpr{X: x, Sel: ast.NewIdent("o")} c.p.additionalSelections[fakeSel] = &fakeSelection{ kind: types.FieldVal, recv: sel.Recv(), index: sel.Index()[:len(sel.Index())-1], typ: recvType, } x = c.setType(fakeSel, recvType) } _, isPointer := recvType.Underlying().(*types.Pointer) methodsRecvType := sel.Obj().Type().(*types.Signature).Recv().Type() _, pointerExpected := methodsRecvType.(*types.Pointer) if !isPointer && pointerExpected { recvType = types.NewPointer(recvType) x = c.setType(&ast.UnaryExpr{Op: token.AND, X: x}, recvType) } if isPointer && !pointerExpected { x = c.setType(x, methodsRecvType) } recv := c.translateImplicitConversionWithCloning(x, methodsRecvType) if isWrapped(recvType) { recv = c.formatExpr("new %s(%s)", c.typeName(methodsRecvType), recv) } return recv } func (c *funcContext) translateBuiltin(name string, sig *types.Signature, args []ast.Expr, ellipsis bool) *expression { switch name { case "new": t := sig.Results().At(0).Type().(*types.Pointer) if c.p.Pkg.Path() == "syscall" && types.Identical(t.Elem().Underlying(), types.Typ[types.Uintptr]) { return c.formatExpr("new Uint8Array(8)") } switch t.Elem().Underlying().(type) { case *types.Struct, *types.Array: return c.formatExpr("%e", c.zeroValue(t.Elem())) default: return c.formatExpr("$newDataPointer(%e, %s)", c.zeroValue(t.Elem()), c.typeName(t)) } case "make": switch argType := c.p.TypeOf(args[0]).Underlying().(type) { case *types.Slice: t := c.typeName(c.p.TypeOf(args[0])) if len(args) == 3 { return c.formatExpr("$makeSlice(%s, %f, %f)", t, args[1], args[2]) } return c.formatExpr("$makeSlice(%s, %f)", t, args[1]) case *types.Map: if len(args) == 2 && c.p.Types[args[1]].Value == nil { return c.formatExpr(`((%1f < 0 || %1f > 2147483647) ? $throwRuntimeError("makemap: size out of range") : {})`, args[1]) } return c.formatExpr("{}") case *types.Chan: length := "0" if len(args) == 2 { length = c.formatExpr("%f", args[1]).String() } return c.formatExpr("new $Chan(%s, %s)", c.typeName(c.p.TypeOf(args[0]).Underlying().(*types.Chan).Elem()), length) default: panic(fmt.Sprintf("Unhandled make type: %T\n", argType)) } case "len": switch argType := c.p.TypeOf(args[0]).Underlying().(type) { case *types.Basic: return c.formatExpr("%e.length", args[0]) case *types.Slice: return c.formatExpr("%e.$length", args[0]) case *types.Pointer: return c.formatExpr("(%e, %d)", args[0], argType.Elem().(*types.Array).Len()) case *types.Map: return c.formatExpr("$keys(%e).length", args[0]) case *types.Chan: return c.formatExpr("%e.$buffer.length", args[0]) // length of array is constant default: panic(fmt.Sprintf("Unhandled len type: %T\n", argType)) } case "cap": switch argType := c.p.TypeOf(args[0]).Underlying().(type) { case *types.Slice, *types.Chan: return c.formatExpr("%e.$capacity", args[0]) case *types.Pointer: return c.formatExpr("(%e, %d)", args[0], argType.Elem().(*types.Array).Len()) // capacity of array is constant default: panic(fmt.Sprintf("Unhandled cap type: %T\n", argType)) } case "panic": return c.formatExpr("$panic(%s)", c.translateImplicitConversion(args[0], types.NewInterface(nil, nil))) case "append": if ellipsis || len(args) == 1 { argStr := c.translateArgs(sig, args, ellipsis) return c.formatExpr("$appendSlice(%s, %s)", argStr[0], argStr[1]) } sliceType := sig.Results().At(0).Type().Underlying().(*types.Slice) return c.formatExpr("$append(%e, %s)", args[0], strings.Join(c.translateExprSlice(args[1:], sliceType.Elem()), ", ")) case "delete": keyType := c.p.TypeOf(args[0]).Underlying().(*types.Map).Key() return c.formatExpr(`delete %e[%s.keyFor(%s)]`, args[0], c.typeName(keyType), c.translateImplicitConversion(args[1], keyType)) case "copy": if basic, isBasic := c.p.TypeOf(args[1]).Underlying().(*types.Basic); isBasic && isString(basic) { return c.formatExpr("$copyString(%e, %e)", args[0], args[1]) } return c.formatExpr("$copySlice(%e, %e)", args[0], args[1]) case "print", "println": return c.formatExpr("console.log(%s)", strings.Join(c.translateExprSlice(args, nil), ", ")) case "complex": argStr := c.translateArgs(sig, args, ellipsis) return c.formatExpr("new %s(%s, %s)", c.typeName(sig.Results().At(0).Type()), argStr[0], argStr[1]) case "real": return c.formatExpr("%e.$real", args[0]) case "imag": return c.formatExpr("%e.$imag", args[0]) case "recover": return c.formatExpr("$recover()") case "close": return c.formatExpr(`$close(%e)`, args[0]) default: panic(fmt.Sprintf("Unhandled builtin: %s\n", name)) } } func (c *funcContext) identifierConstant(expr ast.Expr) (string, bool) { val := c.p.Types[expr].Value if val == nil { return "", false } s := constant.StringVal(val) if len(s) == 0 { return "", false } for i, c := range s { if !((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (i > 0 && c >= '0' && c <= '9') || c == '_' || c == '$') { return "", false } } return s, true } func (c *funcContext) translateExprSlice(exprs []ast.Expr, desiredType types.Type) []string { parts := make([]string, len(exprs)) for i, expr := range exprs { parts[i] = c.translateImplicitConversion(expr, desiredType).String() } return parts } func (c *funcContext) translateConversion(expr ast.Expr, desiredType types.Type) *expression { exprType := c.p.TypeOf(expr) if types.Identical(exprType, desiredType) { return c.translateExpr(expr) } if c.p.Pkg.Path() == "reflect" { if call, isCall := expr.(*ast.CallExpr); isCall && types.Identical(c.p.TypeOf(call.Fun), types.Typ[types.UnsafePointer]) { if ptr, isPtr := desiredType.(*types.Pointer); isPtr { if named, isNamed := ptr.Elem().(*types.Named); isNamed { switch named.Obj().Name() { case "arrayType", "chanType", "funcType", "interfaceType", "mapType", "ptrType", "sliceType", "structType": return c.formatExpr("%e.kindType", call.Args[0]) // unsafe conversion default: return c.translateExpr(expr) } } } } } switch t := desiredType.Underlying().(type) { case *types.Basic: switch { case isInteger(t): basicExprType := exprType.Underlying().(*types.Basic) switch { case is64Bit(t): if !is64Bit(basicExprType) { if basicExprType.Kind() == types.Uintptr { // this might be an Object returned from reflect.Value.Pointer() return c.formatExpr("new %1s(0, %2e.constructor === Number ? %2e : 1)", c.typeName(desiredType), expr) } return c.formatExpr("new %s(0, %e)", c.typeName(desiredType), expr) } return c.formatExpr("new %1s(%2h, %2l)", c.typeName(desiredType), expr) case is64Bit(basicExprType): if !isUnsigned(t) && !isUnsigned(basicExprType) { return c.fixNumber(c.formatParenExpr("%1l + ((%1h >> 31) * 4294967296)", expr), t) } return c.fixNumber(c.formatExpr("%s.$low", c.translateExpr(expr)), t) case isFloat(basicExprType): return c.formatParenExpr("%e >> 0", expr) case types.Identical(exprType, types.Typ[types.UnsafePointer]): return c.translateExpr(expr) default: return c.fixNumber(c.translateExpr(expr), t) } case isFloat(t): if t.Kind() == types.Float32 && exprType.Underlying().(*types.Basic).Kind() == types.Float64 { return c.formatExpr("$fround(%e)", expr) } return c.formatExpr("%f", expr) case isComplex(t): return c.formatExpr("new %1s(%2r, %2i)", c.typeName(desiredType), expr) case isString(t): value := c.translateExpr(expr) switch et := exprType.Underlying().(type) { case *types.Basic: if is64Bit(et) { value = c.formatExpr("%s.$low", value) } if isNumeric(et) { return c.formatExpr("$encodeRune(%s)", value) } return value case *types.Slice: if types.Identical(et.Elem().Underlying(), types.Typ[types.Rune]) { return c.formatExpr("$runesToString(%s)", value) } return c.formatExpr("$bytesToString(%s)", value) default: panic(fmt.Sprintf("Unhandled conversion: %v\n", et)) } case t.Kind() == types.UnsafePointer: if unary, isUnary := expr.(*ast.UnaryExpr); isUnary && unary.Op == token.AND { if indexExpr, isIndexExpr := unary.X.(*ast.IndexExpr); isIndexExpr { return c.formatExpr("$sliceToArray(%s)", c.translateConversionToSlice(indexExpr.X, types.NewSlice(types.Typ[types.Uint8]))) } if ident, isIdent := unary.X.(*ast.Ident); isIdent && ident.Name == "_zero" { return c.formatExpr("new Uint8Array(0)") } } if ptr, isPtr := c.p.TypeOf(expr).(*types.Pointer); c.p.Pkg.Path() == "syscall" && isPtr { if s, isStruct := ptr.Elem().Underlying().(*types.Struct); isStruct { array := c.newVariable("_array") target := c.newVariable("_struct") c.Printf("%s = new Uint8Array(%d);", array, sizes32.Sizeof(s)) c.Delayed(func() { c.Printf("%s = %s, %s;", target, c.translateExpr(expr), c.loadStruct(array, target, s)) }) return c.formatExpr("%s", array) } } if call, ok := expr.(*ast.CallExpr); ok { if id, ok := call.Fun.(*ast.Ident); ok && id.Name == "new" { return c.formatExpr("new Uint8Array(%d)", int(sizes32.Sizeof(c.p.TypeOf(call.Args[0])))) } } } case *types.Slice: switch et := exprType.Underlying().(type) { case *types.Basic: if isString(et) { if types.Identical(t.Elem().Underlying(), types.Typ[types.Rune]) { return c.formatExpr("new %s($stringToRunes(%e))", c.typeName(desiredType), expr) } return c.formatExpr("new %s($stringToBytes(%e))", c.typeName(desiredType), expr) } case *types.Array, *types.Pointer: return c.formatExpr("new %s(%e)", c.typeName(desiredType), expr) } case *types.Pointer: switch u := t.Elem().Underlying().(type) { case *types.Array: return c.translateExpr(expr) case *types.Struct: if c.p.Pkg.Path() == "syscall" && types.Identical(exprType, types.Typ[types.UnsafePointer]) { array := c.newVariable("_array") target := c.newVariable("_struct") return c.formatExpr("(%s = %e, %s = %e, %s, %s)", array, expr, target, c.zeroValue(t.Elem()), c.loadStruct(array, target, u), target) } return c.formatExpr("$pointerOfStructConversion(%e, %s)", expr, c.typeName(t)) } if !types.Identical(exprType, types.Typ[types.UnsafePointer]) { exprTypeElem := exprType.Underlying().(*types.Pointer).Elem() ptrVar := c.newVariable("_ptr") getterConv := c.translateConversion(c.setType(&ast.StarExpr{X: c.newIdent(ptrVar, exprType)}, exprTypeElem), t.Elem()) setterConv := c.translateConversion(c.newIdent("$v", t.Elem()), exprTypeElem) return c.formatExpr("(%1s = %2e, new %3s(function() { return %4s; }, function($v) { %1s.$set(%5s); }, %1s.$target))", ptrVar, expr, c.typeName(desiredType), getterConv, setterConv) } case *types.Interface: if types.Identical(exprType, types.Typ[types.UnsafePointer]) { return c.translateExpr(expr) } } return c.translateImplicitConversionWithCloning(expr, desiredType) } func (c *funcContext) translateImplicitConversionWithCloning(expr ast.Expr, desiredType types.Type) *expression { switch desiredType.Underlying().(type) { case *types.Struct, *types.Array: switch expr.(type) { case nil, *ast.CompositeLit: // nothing default: return c.formatExpr("$clone(%e, %s)", expr, c.typeName(desiredType)) } } return c.translateImplicitConversion(expr, desiredType) } func (c *funcContext) translateImplicitConversion(expr ast.Expr, desiredType types.Type) *expression { if desiredType == nil { return c.translateExpr(expr) } exprType := c.p.TypeOf(expr) if types.Identical(exprType, desiredType) { return c.translateExpr(expr) } basicExprType, isBasicExpr := exprType.Underlying().(*types.Basic) if isBasicExpr && basicExprType.Kind() == types.UntypedNil { return c.formatExpr("%e", c.zeroValue(desiredType)) } switch desiredType.Underlying().(type) { case *types.Slice: return c.formatExpr("$subslice(new %1s(%2e.$array), %2e.$offset, %2e.$offset + %2e.$length)", c.typeName(desiredType), expr) case *types.Interface: if typesutil.IsJsObject(exprType) { // wrap JS object into js.Object struct when converting to interface return c.formatExpr("new $jsObjectPtr(%e)", expr) } if isWrapped(exprType) { return c.formatExpr("new %s(%e)", c.typeName(exprType), expr) } if _, isStruct := exprType.Underlying().(*types.Struct); isStruct { return c.formatExpr("new %1e.constructor.elem(%1e)", expr) } } return c.translateExpr(expr) } func (c *funcContext) translateConversionToSlice(expr ast.Expr, desiredType types.Type) *expression { switch c.p.TypeOf(expr).Underlying().(type) { case *types.Array, *types.Pointer: return c.formatExpr("new %s(%e)", c.typeName(desiredType), expr) } return c.translateExpr(expr) } func (c *funcContext) loadStruct(array, target string, s *types.Struct) string { view := c.newVariable("_view") code := fmt.Sprintf("%s = new DataView(%s.buffer, %s.byteOffset)", view, array, array) var fields []*types.Var var collectFields func(s *types.Struct, path string) collectFields = func(s *types.Struct, path string) { for i := 0; i < s.NumFields(); i++ { field := s.Field(i) if fs, isStruct := field.Type().Underlying().(*types.Struct); isStruct { collectFields(fs, path+"."+fieldName(s, i)) continue } fields = append(fields, types.NewVar(0, nil, path+"."+fieldName(s, i), field.Type())) } } collectFields(s, target) offsets := sizes32.Offsetsof(fields) for i, field := range fields { switch t := field.Type().Underlying().(type) { case *types.Basic: if isNumeric(t) { if is64Bit(t) { code += fmt.Sprintf(", %s = new %s(%s.getUint32(%d, true), %s.getUint32(%d, true))", field.Name(), c.typeName(field.Type()), view, offsets[i]+4, view, offsets[i]) break } code += fmt.Sprintf(", %s = %s.get%s(%d, true)", field.Name(), view, toJavaScriptType(t), offsets[i]) } case *types.Array: code += fmt.Sprintf(`, %s = new ($nativeArray(%s))(%s.buffer, $min(%s.byteOffset + %d, %s.buffer.byteLength))`, field.Name(), typeKind(t.Elem()), array, array, offsets[i], array) } } return code } func (c *funcContext) fixNumber(value *expression, basic *types.Basic) *expression { switch basic.Kind() { case types.Int8: return c.formatParenExpr("%s << 24 >> 24", value) case types.Uint8: return c.formatParenExpr("%s << 24 >>> 24", value) case types.Int16: return c.formatParenExpr("%s << 16 >> 16", value) case types.Uint16: return c.formatParenExpr("%s << 16 >>> 16", value) case types.Int32, types.Int, types.UntypedInt: return c.formatParenExpr("%s >> 0", value) case types.Uint32, types.Uint, types.Uintptr: return c.formatParenExpr("%s >>> 0", value) case types.Float32: return c.formatExpr("$fround(%s)", value) case types.Float64: return value default: panic(fmt.Sprintf("fixNumber: unhandled basic.Kind(): %s", basic.String())) } } func (c *funcContext) internalize(s *expression, t types.Type) *expression { if typesutil.IsJsObject(t) { return s } switch u := t.Underlying().(type) { case *types.Basic: switch { case isBoolean(u): return c.formatExpr("!!(%s)", s) case isInteger(u) && !is64Bit(u): return c.fixNumber(c.formatExpr("$parseInt(%s)", s), u) case isFloat(u): return c.formatExpr("$parseFloat(%s)", s) } } return c.formatExpr("$internalize(%s, %s)", s, c.typeName(t)) } func (c *funcContext) formatExpr(format string, a ...interface{}) *expression { return c.formatExprInternal(format, a, false) } func (c *funcContext) formatParenExpr(format string, a ...interface{}) *expression { return c.formatExprInternal(format, a, true) } func (c *funcContext) formatExprInternal(format string, a []interface{}, parens bool) *expression { processFormat := func(f func(uint8, uint8, int)) { n := 0 for i := 0; i < len(format); i++ { b := format[i] if b == '%' { i++ k := format[i] if k >= '0' && k <= '9' { n = int(k - '0' - 1) i++ k = format[i] } f(0, k, n) n++ continue } f(b, 0, 0) } } counts := make([]int, len(a)) processFormat(func(b, k uint8, n int) { switch k { case 'e', 'f', 'h', 'l', 'r', 'i': counts[n]++ } }) out := bytes.NewBuffer(nil) vars := make([]string, len(a)) hasAssignments := false for i, e := range a { if counts[i] <= 1 { continue } if _, isIdent := e.(*ast.Ident); isIdent { continue } if val := c.p.Types[e.(ast.Expr)].Value; val != nil { continue } if !hasAssignments { hasAssignments = true out.WriteByte('(') parens = false } v := c.newVariable("x") out.WriteString(v + " = " + c.translateExpr(e.(ast.Expr)).String() + ", ") vars[i] = v } processFormat(func(b, k uint8, n int) { writeExpr := func(suffix string) { if vars[n] != "" { out.WriteString(vars[n] + suffix) return } out.WriteString(c.translateExpr(a[n].(ast.Expr)).StringWithParens() + suffix) } switch k { case 0: out.WriteByte(b) case 's': if e, ok := a[n].(*expression); ok { out.WriteString(e.StringWithParens()) return } out.WriteString(a[n].(string)) case 'd': out.WriteString(strconv.Itoa(a[n].(int))) case 't': out.WriteString(a[n].(token.Token).String()) case 'e': e := a[n].(ast.Expr) if val := c.p.Types[e].Value; val != nil { out.WriteString(c.translateExpr(e).String()) return } writeExpr("") case 'f': e := a[n].(ast.Expr) if val := c.p.Types[e].Value; val != nil { d, _ := constant.Int64Val(constant.ToInt(val)) out.WriteString(strconv.FormatInt(d, 10)) return } if is64Bit(c.p.TypeOf(e).Underlying().(*types.Basic)) { out.WriteString("$flatten64(") writeExpr("") out.WriteString(")") return } writeExpr("") case 'h': e := a[n].(ast.Expr) if val := c.p.Types[e].Value; val != nil { d, _ := constant.Uint64Val(constant.ToInt(val)) if c.p.TypeOf(e).Underlying().(*types.Basic).Kind() == types.Int64 { out.WriteString(strconv.FormatInt(int64(d)>>32, 10)) return } out.WriteString(strconv.FormatUint(d>>32, 10)) return } writeExpr(".$high") case 'l': if val := c.p.Types[a[n].(ast.Expr)].Value; val != nil { d, _ := constant.Uint64Val(constant.ToInt(val)) out.WriteString(strconv.FormatUint(d&(1<<32-1), 10)) return } writeExpr(".$low") case 'r': if val := c.p.Types[a[n].(ast.Expr)].Value; val != nil { r, _ := constant.Float64Val(constant.Real(val)) out.WriteString(strconv.FormatFloat(r, 'g', -1, 64)) return } writeExpr(".$real") case 'i': if val := c.p.Types[a[n].(ast.Expr)].Value; val != nil { i, _ := constant.Float64Val(constant.Imag(val)) out.WriteString(strconv.FormatFloat(i, 'g', -1, 64)) return } writeExpr(".$imag") case '%': out.WriteRune('%') default: panic(fmt.Sprintf("formatExpr: %%%c%d", k, n)) } }) if hasAssignments { out.WriteByte(')') } return &expression{str: out.String(), parens: parens} }