// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec // maxArrayLen is the size of uint, which determines // the maximum length of any array. const maxArrayLen = 1<<((32<<(^uint(0)>>63))-1) - 1 // All non-std package dependencies live in this file, // so porting to different environment is easy (just update functions). func pruneSignExt(v []byte, pos bool) (n int) { if len(v) < 2 { } else if pos && v[0] == 0 { for ; v[n] == 0 && n+1 < len(v) && (v[n+1]&(1<<7) == 0); n++ { } } else if !pos && v[0] == 0xff { for ; v[n] == 0xff && n+1 < len(v) && (v[n+1]&(1<<7) != 0); n++ { } } return } func halfFloatToFloatBits(h uint16) (f uint32) { // retrofitted from: // - OGRE (Object-Oriented Graphics Rendering Engine) // function: halfToFloatI https://www.ogre3d.org/docs/api/1.9/_ogre_bitwise_8h_source.html s := uint32(h >> 15) m := uint32(h & 0x03ff) e := int32((h >> 10) & 0x1f) if e == 0 { if m == 0 { // plus or minus 0 return s << 31 } // Denormalized number -- renormalize it for (m & 0x0400) == 0 { m <<= 1 e -= 1 } e += 1 m &= ^uint32(0x0400) } else if e == 31 { if m == 0 { // Inf return (s << 31) | 0x7f800000 } return (s << 31) | 0x7f800000 | (m << 13) // NaN } e = e + (127 - 15) m = m << 13 return (s << 31) | (uint32(e) << 23) | m } func floatToHalfFloatBits(i uint32) (h uint16) { // retrofitted from: // - OGRE (Object-Oriented Graphics Rendering Engine) // function: halfToFloatI https://www.ogre3d.org/docs/api/1.9/_ogre_bitwise_8h_source.html // - http://www.java2s.com/example/java-utility-method/float-to/floattohalf-float-f-fae00.html s := (i >> 16) & 0x8000 e := int32(((i >> 23) & 0xff) - (127 - 15)) m := i & 0x7fffff var h32 uint32 if e <= 0 { if e < -10 { // zero h32 = s // track -0 vs +0 } else { m = (m | 0x800000) >> uint32(1-e) h32 = s | (m >> 13) } } else if e == 0xff-(127-15) { if m == 0 { // Inf h32 = s | 0x7c00 } else { // NAN m >>= 13 var me uint32 if m == 0 { me = 1 } h32 = s | 0x7c00 | m | me } } else { if e > 30 { // Overflow h32 = s | 0x7c00 } else { h32 = s | (uint32(e) << 10) | (m >> 13) } } h = uint16(h32) return } // growCap will return a new capacity for a slice, given the following: // - oldCap: current capacity // - unit: in-memory size of an element // - num: number of elements to add func growCap(oldCap, unit, num uint) (newCap uint) { // appendslice logic (if cap < 1024, *2, else *1.25): // leads to many copy calls, especially when copying bytes. // bytes.Buffer model (2*cap + n): much better for bytes. // smarter way is to take the byte-size of the appended element(type) into account // maintain 1 thresholds: // t1: if cap <= t1, newcap = 2x // else newcap = 1.5x // // t1 is always >= 1024. // This means that, if unit size >= 16, then always do 2x or 1.5x (ie t1, t2, t3 are all same) // // With this, appending for bytes increase by: // 100% up to 4K // 50% beyond that // unit can be 0 e.g. for struct{}{}; handle that appropriately maxCap := num + (oldCap * 3 / 2) if unit == 0 || maxCap > maxArrayLen || maxCap < oldCap { // handle wraparound, etc return maxArrayLen } var t1 uint = 1024 // default thresholds for large values if unit <= 4 { t1 = 8 * 1024 } else if unit <= 16 { t1 = 2 * 1024 } newCap = 2 + num if oldCap > 0 { if oldCap <= t1 { // [0,t1] newCap = num + (oldCap * 2) } else { // (t1,infinity] newCap = maxCap } } // ensure newCap takes multiples of a cache line (size is a multiple of 64) t1 = newCap * unit if t2 := t1 % 64; t2 != 0 { t1 += 64 - t2 newCap = t1 / unit } return }